• Title/Summary/Keyword: linear regression model

Search Result 1,945, Processing Time 0.024 seconds

Consistency and Bounds on the Bias of $S^2$ in the Linear Regression Model with Moving Average Disturbances

  • Song, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.507-518
    • /
    • 1995
  • The ordinary least squares based estiamte $S^2$ of the disturbance variance is considered in the linear regression model when the disturbances follow the first-order moving-average process. It is shown that $S^2$ is weakly consistent estimate for the disturbance varaince without any restriction on the regressor matrix X. Also, simple exact bounds on the relative bias of $S^2$ are given in finite sample sizes.

  • PDF

Bayesian Outlier Detection in Regression Model

  • Younshik Chung;Kim, Hyungsoon
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.311-324
    • /
    • 1999
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for an outlier problem and also analyze it in linear regression model using a Bayesian approach. Then we use the mean-shift model and SSVS(George and McCulloch, 1993)'s idea which is based on the data augmentation method. The advantage of proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability. The MCMC method(Gibbs sampler) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data and a real data.

  • PDF

A Bayesian Approach to Detecting Outliers Using Variance-Inflation Model

  • Lee, Sangjeen;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.805-814
    • /
    • 2001
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for outliers problem and also analyze it in linear regression model using a Bayesian approach with the variance-inflation model. We will use Geweke's(1996) ideas which is based on the data augmentation method for detecting outliers in linear regression model. The advantage of the proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability The sampling based approach can be used to allow the complicated Bayesian computation. Finally, our proposed methodology is applied to a simulated and a real data.

  • PDF

Collapsibility and Suppression for Cumulative Logistic Model

  • Hong, Chong-Sun;Kim, Kil-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.313-322
    • /
    • 2005
  • In this paper, we discuss suppression for logistic regression model. Suppression for linear regression model was defined as the relationship among sums of squared for regression as well as correlation coefficients of. variables. Since it is not common to obtain simple correlation coefficient for binary response variable of logistic model, we consider cumulative logistic models with multinomial and ordinal response variables rather than usual logistic model. As number of category of a response variable for the cumulative logistic model gets collapsed into binary, it is found that suppressions for these logistic models are changed. These suppression results for cumulative logistic models are discussed and compared with those of linear model.

Hidden Truncation Normal Regression

  • Kim, Sungsu
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, we propose regression methods based on the likelihood function. We assume Arnold-Beaver Skew Normal(ABSN) errors in a simple linear regression model. It was shown that the novel method performs better with an asymmetric data set compared to the usual regression model with the Gaussian errors. The utility of a novel method is demonstrated through simulation and real data sets.

Interval Estimation for Sum of Variance Components in a Simple Linear Regression Model with Unbalanced Nested Error Structure

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.361-370
    • /
    • 2003
  • Those who are interested in making inferences concerning linear combination of valiance components in a simple linear regression model with unbalanced nested error structure can use the confidence intervals proposed in this paper. Two approximate confidence intervals for the sum of two variance components in the model are proposed. Simulation study is peformed to compare the methods. The methods are applied to a numerical example and recommendations are given for choosing a proper interval.

Confidence Interval For Sum Of Variance Components In A Simple Linear Regression Model With Unbalanced Nested Error Structure

  • Park, Dong-Joon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.75-78
    • /
    • 2003
  • Those who are interested in making inferences concerning linear combination of variance components in a simple linear regression model with unbalanced nested error structure can use the confidence intervals proposed in this paper. Two approximate confidence intervals for the sum of two variance components in the model are proposed. Simulation study is peformed to compare the methods.

  • PDF

Inter-comparison of Prediction Skills of Multiple Linear Regression Methods Using Monthly Temperature Simulated by Multi-Regional Climate Models (다중 지역기후모델로부터 모의된 월 기온자료를 이용한 다중선형회귀모형들의 예측성능 비교)

  • Seong, Min-Gyu;Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.669-683
    • /
    • 2015
  • In this study, we investigated the prediction skills of four multiple linear regression methods for monthly air temperature over South Korea. We used simulation results from four regional climate models (RegCM4, SNURCM, WRF, and YSURSM) driven by two boundary conditions (NCEP/DOE Reanalysis 2 and ERA-Interim). We selected 15 years (1989~2003) as the training period and the last 5 years (2004~2008) as validation period. The four regression methods used in this study are as follows: 1) Homogeneous Multiple linear Regression (HMR), 2) Homogeneous Multiple linear Regression constraining the regression coefficients to be nonnegative (HMR+), 3) non-homogeneous multiple linear regression (EMOS; Ensemble Model Output Statistics), 4) EMOS with positive coefficients (EMOS+). It is same method as the third method except for constraining the coefficients to be nonnegative. The four regression methods showed similar prediction skills for the monthly air temperature over South Korea. However, the prediction skills of regression methods which don't constrain regression coefficients to be nonnegative are clearly impacted by the existence of outliers. Among the four multiple linear regression methods, HMR+ and EMOS+ methods showed the best skill during the validation period. HMR+ and EMOS+ methods showed a very similar performance in terms of the MAE and RMSE. Therefore, we recommend the HMR+ as the best method because of ease of development and applications.

A Study on the Spatial Distribution Characteristic of Urban Surface Temperature using Remotely Sensed Data and GIS (원격탐사자료와 GIS를 활용한 도시 표면온도의 공간적 분포특성에 관한 연구)

  • Jo, Myung-Hee;Lee, Kwang-Jae;Kim, Woon-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • This study used four theoretical models, such as two-point linear model, linear regression model, quadratic regression model and cubic regression model which are presented from The Ministry of Science and Technology, for extraction of urban surface temperature from Landsat TM band 6 image. Through correlation and regression analysis between result of four models and AWS(automatic weather station) observation data, this study could verify spatial distribution characteristic of urban surface temperature using GIS spatial analysis method. The result of analysis for surface temperature by landcover showed that the urban and the barren land belonged to the highest surface temperature class. And there was also -0.85 correlation in the result of correlation analysis between surface temperature and NDVI. In this result, the meteorological environmental characteristics wuld be regarded as one of the important factor in urban planning.

  • PDF

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF