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Abstract
In this paper, we propose regression methods based on the likelihood function. We assume Arnold-Beaver

Skew Normal(ABSN) errors in a simple linear regression model. It was shown that the novel method performs
better with an asymmetric data set compared to the usual regression model with the Gaussian errors. The utility
of a novel method is demonstrated through simulation and real data sets.

Keywords: Arnold-Beaver skew normal distribution, asymmetric errors, goodness of fit test, sim-
ple linear regression.

1. Introduction

Many distributions encountered in practice are not symmetric but are skewed to some extent (Arnold
and Beaver, 2000; Azzalini, 1986), as differently from what is usually known to be symmetric and
unimodal, which can be modeled using a Gaussian distribution. SenGupta and Ugwuowo (2006)
showed that many circular distributions are also asymmetrically distributed. Regression models using
asymmetric error distributions appear in Bianco et al. (2005) and Marazzi and Yohai (2002). Bianco
et al. (2005) introduces a regression model that is a natural extension of the method of moment es-
timates for ordinary regression and discusses their asymptotic properties. Marazzi and Yohai (2002)
consider robust estimation of the linear regression model with symmetric and and asymmetric error
distribution, where they introduce truncated maximum likelihood estimators. In this paper, we con-
sider a regression model that employs a distribution called hidden truncation normal distribution or
Arnold-Beaver Skew Normal(ABSN) distribution (Arnold and Beaver, 2000), which is suitable to
model asymmetric or bimodal distributions. Useful properties of ABSN distribution are well studied
in Arnold and Beaver (2000) and Azzalini (1986), and we refer our readers to the detailed results on
ABSN distribution. A multivariate version of ABSN distribution is proposed in Azzalini and Dalla
Valle (1996). In this paper, a linear - linear regression refers to a model that uses a linear dependent
variable and a linear independent variable. Hidden truncated regression refers to a linear - linear re-
gression with the assumption of ABSN errors. In the proposed hidden truncation regression model, we
will consider a linear link function that relates the mean of the dependent variable to the independent
variable through the following equation (Kutner, 2004)

µY |X=x = β0 + β1x.
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2. Hidden Truncation Normal Regression

Suppose Y1, . . . , Yn are independent variables, which are observed for fixed concomitant values de-
noted by x1, . . . , xn. We assume that the conditional distribution of Yi given Xi = xi is an ABSN
distribution. This means that Yi = yi is assumed to be observed for fixed xi, and there exists a hid-
den covariable Zi, which is left truncated at a value, h, where (Yi,Zi) has a joint bivariate normal
distribution. The density is then given by

fY (y|λ0, λ1, σ) =
exp

(
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2σ2

)
Φ

(
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where values of λ0 and λ1 are determined by values of h and σYZ , the covariance between Yi and Zi,
and ϕ(·) and Φ(·) represent the pdf and the cdf of the standard normal distribution. Now, allowing the
conditional mean to vary for different values of X, we write

fY |x(y|x, β0, β1, λ0, λ1, σ) =
exp
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where we use the linear mean link as µ(x) = β0 + β1x.

Proposition 1. The moment generating function of the above density is given by

MY |x(t) =
exp

(
µ(x)t + σ2t2

2

)
Φ

(
λ0+λ1σt√

1+(λ1)2

)
Φ

(
λ0√

1+(λ1)2

) .

For a proof, our readers can refer to Arnold and Beaver (2000).
Using the linear mean link function and the additive property of the ABSN distribution, we write our
model as

Y = β0 + β1x + σϵ, ϵ ∼ ABSN(λ0, λ1),

where

f (ϵ |λ0, λ1, σ) =
exp
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) . (2.2)

Using the above model, it is found that the errors have a non-zero conditional mean and a constant
conditional variance (Arnold and Beaver, 2000). As a consequence, we have a bias given by

E (Y − β0 − β1x|λ0, λ1, σ) =
σλ1√
1 + λ2

1

Λ
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 ,
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where Λ(·) is called the inverse Mill’s ratio and represents ϕ(·)/Φ(·). The bias is caused because the
ABSN density is not centered at 0. This bias can be removed by shifting the model by the amount of
the absolute difference between 0 and the mean of an ABSN distribution. This means that we add or
subtract the same bias term so that the errors have 0 conditional mean direction.

Proposition 2. If λ1 becomes larger, the bias becomes closer to σ/
√
π.

Proof:
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where we use the Slutsky’s product limit theorem. �

Therefore, it is seen that the amount of bias is asymptotically proportional to the unknown standard
error of the regression model.

Proposition 3. The conditional variance of the density shown in (2.2) is given by

V (ϵ |λ0, λ1, σ) = σ2
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A proof is a straightforward exercise, therefore omitted here. The MLEs of the 5 parameters are
obtained by simultaneously maximizing the log likelihood function shown below, with respect to the
5 parameters.

1
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Throughout this paper, we have applied R function called ‘optim’ to obtain the MLEs, where it em-
ploys Newton-Raphson method of numerical optimization technique.

2.1. Asymptotic properties of the MLEs

One can easily check that an ABSN density satisfies the regularity conditions for consistency and
asymptotic normality of the MLE (Kim, 2009). Thus, the MLEs, defined to be solutions of the
likelihood equations: n−1∂Ln(θ)/∂θ = 0, are consistent for θ0, and

√
n
(
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) d−→ N
(
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where I[θ0] = E [(∂Ln(θ)/∂θ)(∂Ln(θ)/∂θ′)]θ0
. The resulting asymptotic distribution of the MLE is

given by
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.
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Table 1: ML estimates and standard errors from a simulation
Parameter

[True Value]
β0 β1 λ0 λ1

[1.5] [2] [−1.1][−1.1][−1.1] [−2.2][−2.2][−2.2]
Estimates 1.42 1.92 −0.93 −2.07

(Standard Error) (0.42) (0.55) (0.87) (0.66)

Figure 1: Density plot of 202 heights

In our context, θ0 = (β0, β1, σ, λ0, λ1). The estimated MLEs are asymptotically normal with the
estimated variance-covariance matrix given as the inverse of the observed information matrix.

2.2. Simulation and real examples

Suppose we fix 5 levels of X, an independent variable, with 10 replicates each, and the data generating
process is such that ϵ ∼ABSN(λ0, λ1) and y = β0+β1x+ϵ. 100 such samples of size 50 were simulated
to compute the ML estimates for each of the 100 samples. We picked 0.5, 1, 1.5, 2, 2.5 for the 5 levels
of X. The corresponding 5000 values of Y were generated using values −1.1, −2.2, 1.5, and 2 for
λ0, λ1, β0, and β1, respectively. The estimation results are shown in Table 1. It is shown that the
ABSN model adequately fits the simulated data set and contains true parameter values within 95%
confidence limits.

Next, we illustrate maximum likelihood estimation using a data set consisting of height and weight
data on 102 male and 100 female athletes collected at the Australian Institute of Sport, courtesy of
Richard Telford and Ross Cunningham (Cook and Weisberg, 1994). A smoothed density plot of the
height data is presented in Figure 1. Slight right skewness of data set is evident in the figure. For
a comparison purpose, we fit both models using normal errors and ABSN errors to the height and
weight data set. The fit result is shown in Table 2. Testing hypotheses,

H0 : λ0 = λ1 = 0 vs. H1 : at least one of them is not equal to zero,

with 0.1 level of significance, the likelihood ratio test statistic is given as

2 ln(535.1 − 523.9) = 4.83,
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Table 2: Weight (y) vs. Height (x) of 202 Australian athletes.
Parameter Goodness of Fit

β0 β1 σ λ0 λ1 −−−log likelihood
Normal 139.3 0.54 8.58 535.1
ABSN 139.5 0.55 9.93 26.2 −19.4 523.9

Figure 2: Fitted line for weight vs. height

which follows asymptotically the chi-square distribution with 2 degrees of freedom. Since the critical
value, χ2

2,0.1, is 4.61, there is enough evidence to say that the data set has an ABSN distribution with
λ0 and λ1 equal to 26.2 and −19.4, respectively, at 0.1 significant level. The exact p-value is given
by 0.089. The fact that it was not significant at a higher level such as 0.05 seemed to be attributed to
having a data set which is not severely asymmetric.

The mean value of Y when X = x is given by

E (Y |x) = 139.5 + 0.55x − 9.92Λ (1.35) = 137.8 + 0.55x. (2.3)

The estimated intercept value does not have a practical meaning; however, it is estimated that the
weight increases 0.55 pounds for unit increase of inch in height. The fitted line (2.3) is shown on the
scatter plot in Figure 2. It is shown that the ABSN model is a good fit for the weight versus height
data set.

3. Conclusion

Many distributions encountered in practice are not symmetric but are skewed to some extent; subse-
quently, the use of regression models with asymmetrically distributed errors (such as ABSN errors)
are in demand. Simulation results show that a maximum likelihood estimation is suitable for the pa-
rameters of the novel regression model. Fitting the weight and height data set shows that the hidden
truncation regression model fits better (even with slight skewness in the data set) than the usual normal
regression model.



798 Sungsu Kim

References

Arnold, B. C. and Beaver, R. (2000). Hidden truncation models, Sankhyā: The Indian Journal of
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