• Title/Summary/Keyword: linear interval systems

Search Result 89, Processing Time 0.034 seconds

Crack identification in short shafts using wavelet-based element and neural networks

  • Xiang, Jiawei;Chen, Xuefeng;Yang, Lianfa
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.543-560
    • /
    • 2009
  • The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval (BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by non-dimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model of rotor system is constructed to solve the first three natural frequencies functions of normalized crack location and depth. The normalized crack location, normalized crack depth and the first three natural frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis. Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.

Robust Pole Assignment Control for Linear Systems with Structured Uncertainty (구조적 불확실성을 갖는 선형계의 강인한 극배치 제어)

  • Kim, Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 1992
  • This paper deals with the problem of robust pole-assignment control for linear systems with structured uncertainty. It considers two cases whose colsed-loop characteristic equations are presented as a family of interval polynomial and polytopic polynomial family respectively. We propose a method of finding the pole-placement region in which the fixed gain controller guarantees the required damping ratio and stability margin despite parameter perturbation. Some results of Kharitonov like stability and two kinds of transformations are included. As an illustrative example, we show that the proposed method can apply effectivly to the single magnet levitation system including some uncertainties (mass, inductance etc.).

  • PDF

Delay-dependent Robust Stability of Discrete-time Uncertain Delayed Descriptor Systems using Quantization/overflow Nonlinearities (양자화와 오버플로우 비선형성을 가지는 이산시간 불확실 지연 특이시스템의 지연종속 강인 안정성)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • This paper considers the problem of robust stability for uncertain discrete-time interval time-varying delayed descriptor systems using any combinations of quantization and overflow nonlinearities. First, delay-dependent linear matrix inequality (LMI) condition for discrete-time descriptor systems with time-varying delay and quantization/overflow nonlinearities is presented by proper Lyapunov function. Second, it is shown that the obtained condition can be extended into descriptor systems with uncertainties such as norm-bounded parameter uncertainties and polytopic uncertainties by some useful lemmas. The proposed results can be applied to both descriptor systems and non-descriptor systems. Finally, numerical examples are shown to illustrate the effectiveness and less conservativeness.

Design of an iterative learning controller for a class of linear dynamic systems with time-delay (시간 지연이 있는 선형 시스템에 대한 반복 학습 제어기의 설계)

  • Park, Kwang-Hyun;Bien, Zeung-Nam;Hwang, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.295-300
    • /
    • 1998
  • In this paper, we point out the possibility of the divergence of control input caused by the estimation error of delay-time when general iterative learning algorithms are applied to a class of linear dynamic systems with time-delay in which delay-time is not exactly measurable, and then propose a new type of iterative learning algorithm in order to solve this problem. To resolve the uncertainty of delay-time, we propose an algorithm using holding mechanism which has been used in digital control system and/or discrete-time control system. The control input is held as constant value during the time interval of which size is that of the delay-time uncertainty. The output of the system tracks a given desired trajectory at discrete points which are spaced auording to the size of uncertainty of delay-time with the robust property for estimation error of delay-time. Several numerical examples are given to illustrate the effeciency of the proposed algorithm.

  • PDF

Necessary and Sufficient Stability Condition of Discrete State Delay Systems

  • Suh, Young-Soo;Ro, Young-Shick;Kang, Hee-Jun;Lee, Hong-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.501-508
    • /
    • 2004
  • A new method to solve a Lyapunov equation for a discrete delay system is proposed. Using this method, a Lyapunov equation can be solved from a simple linear equation and N-th power of a constant matrix, where N is the state delay. Combining a Lyapunov equation and frequency domain stability, a new stability condition is proposed for a discrete state delay system whose state delay is not exactly known but only known to lie in a certain interval.

Relationship between motion speed and working accuracy of industrial articulated robot arms

  • Goto, Satoru;Nakamura, Masatoshi;Kyura, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.230-233
    • /
    • 1993
  • This paper described a relationship between motion speed and working accuracy of industrial articulated robot arms. Working accuracy of the robot arm deteriorates at high speed operation caused by a nonlinear transformation of the kinematics and the time delay of the robot arm dynamic. The deterioration of the following trajectory was expressed as a linear function of the squares of the robot arm motion speed, depending upon a posture of the robot arm and division interval of the objective trajectory.

  • PDF

Long-term Energy Systems Otimization Study (장기 에너지 수급체계화 연구)

  • 김풍일
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.4 no.2
    • /
    • pp.35-39
    • /
    • 1979
  • In order to recommend future national policy directions on energy supply and consumption and to suggest energy technological priorities to be developed, comprehensive energy models have been developed through this study in a sense of strategic and systematic approach. The “energy input-output model” has been formulated to analyze the mutual impacts between energy consumption patterns and industrial structures and to calculate energy intensities of industrial sectors. The long-term energy demands to the year 2000 were forecasted by using multi-regressional method and the optimal energy flow balances for five-year interval have been studied by using the “energy linear programming model” being took full account of interfuel substitutability and technology.

  • PDF

Stability Conditions for Positive Time-Varying Discrete Interval System with Unstructured Uncertainty (비구조화 불확실성을 갖는 양의 시변 이산 구간 시스템의 안정 조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.577-583
    • /
    • 2019
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, we consider the new stability condition for the positive time-varying linear discrete interval systems with time-varying delay and unstructured uncertainty. The delay time is considered as time-varying within certain interval having minimum and maximum values and the system is subjected to nonlinear unstructured uncertainty which only gives information on uncertainty magnitude. The proposed stability condition is an improvement of the previous results which can be applied only to time-invariant systems or had no consideration of uncertainty, and they can be expressed in the form of a very simple inequality. The stability conditions are derived using the Lyapunov stability theory and have many advantages over previous results using the upper solution bound of the Lyapunov equation. Through numerical example, the proposed stability conditions are proven to be effective and can include the existing results.

Strategic Analysis of the Competition between Internet Seller and Conventional Retailer Selling Single Commodity (단일 상품을 판매하는 인터넷 상점과 전통적인 소매점 간의 경쟁에 대한 전략적 분석)

  • Cho, Hyung-Rae;Kwon, Hyo-Seok;Cha, Chun-Nam
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.4
    • /
    • pp.277-288
    • /
    • 2005
  • The proliferation of the internet technologies and applications has intensified business activities on the Internet. This study considered the price competition between two shopping channels, one on-line seller and the other traditional off-line retailer. Based on the Hotelling's linear market model, we derive the Nash and Stackelberg equilibria as a function of the cost parameters which represent the characteristics of the online and off-line channels. By analyzing the equilibrium solutions, the following significant findings were obtained. First, pricing by Stackelberg equilibrium always outperformed that of Nash equilibrium. However the value of the cost parameters played a crucial role in determining both channels' preferred position (price leader or follower). Second, the online seller could benefit more in terms of profit by lowering its efficiency when its efficiency belongs to a certain interval. Third, when the online seller's efficiency is low, lowering its delivery cost has no contribution to its profit. To benefit more from lowering its delivery cost, increasing its channel efficiency to a certain level should be preceded.

MULTIPLICITY RESULTS FOR A CLASS OF SECOND ORDER SUPERLINEAR DIFFERENCE SYSTEMS

  • Zhang, Guoqing;Liu, Sanyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.693-701
    • /
    • 2006
  • Using Minimax principle and Linking theorem in critical point theory, we prove the existence of two nontrivial solutions for the following second order superlinear difference systems $$(P)\{{\Delta}^2x(k-1)+g(k,y(k))=0,\;k{\in}[1,\;T],\;{\Delta}^2y(k-1)+f(k,\;x(k)=0,\;k{\in}[1,\;T],\;x(0)=y(0)=0,\;x(T+1)=y(T+1)=0$$ where T is a positive integer, [1, T] is the discrete interval {1, 2,..., T}, ${\Delat}x(k)=x(k+1)-x(k)$ is the forward difference operator and ${\Delta}^2x(k)={\Delta}({\Delta}x(k))$.