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MULTIPLICITY RESULTS FOR A CLASS OF SECOND
ORDER SUPERLINEAR DIFFERENCE SYSTEMS

GUOQING ZHANG AND SANYANG Li1u

ABSTRACT. Using Minimax principle and Linking theorem in crit-

ical point theory, we prove the existence of two nontrivial solutions

for the following second order superlinear difference systems

[ Ala(k—1)+g(k,y(k) =0, ke 1,7],
A%y(k = 1) + f(k,z(k)) =0, ke [1,1],

| 20)=9(0) = 0,27 + 1) =y(T +1) =0,

where T is a positive integer, [1,T] is the discrete interval {1,2,...,

T}, Az(k) = z(k + 1) — z(k) is the forward difference operator and

Nx(k) = A(Az(k)).

(P) <

1. Introduction

In this paper, we will investigate the following discrete boundary
value problems
A?z(k —1) + g(k,y(k)) = 0, ke [1,T),
(P)q A%y(k—1)+ f(k,z(k)) =0, ke[1,T],
2(0) =y(0)=0,2(T+1)=y(T+1)=0,
where T is a positive integer, [1,T] is the discrete interval {1,2,...,T},
Az(k)=z(k+1) — z(k) is the forward difference operator and A%z(k) =
A(Az(k)). Recently, difference problems via variational methods have
been widely studied by various authors. Guo and Yu [4] prove the ex-
istence and multiplicity of periodic and subharmonic solutions for the
second order superlinear difference equation

(1.1) APy(k —1) + f(k,y(k)) =0,

where f € C(R x R,R) and f(k+ m,2) = f(k,2),Y(k,z) € Z x R.
Agarwal, Perera, and O’ Regan [2] discussed the discrete boundary value
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problem

(1.2) { Ay(k — 1) + g(k, y(k)) = 0,k € [1,T),

y(0) =y(T+1) =0.

Thanks to Minimax principle and Mountain Pass Lemma in critical point
theory, they proved the existence of two nonnegative solutions and at
least one of which is positive.The aim of this paper is to generalize the
single equation (1.2) to a case of the system (P) and prove the existence
of two nontrivial solutions for the system (P). In this situation, some
interesting features appear due to the coupling in the system (P). Here
we assume the following conditions.

(H1): f,g € C([1,T] x R, R).
(H2) : lim,_o . (";’ 2

ke [1,T].
(H3): There exist R > 0, > 2, such that

=lim,_,g = 0, uniformly with respect to

0 < BF(k,z) < zf(k,2),0 < BG(k,z) < zg(k,2),Y|z| > R,
where F(k, z) = /0 F(k, s)ds, G(k, z) = /0 g(k, s)ds.

THEOREM 1.1. If conditions (H1), (H2) and (H3) hold, the system
(P) possess two nontrivial solutions.

REMARK 1.2. By assumption (H3), there exist c1,ca > 0 such that
(1.3) F(k,z),G(k,2) > c12” — ¢3.
Combining (H3) and (1.3), we obtain
2f(k,2) > BF(k,z) > Be12P — Beg, 2g(k, 2) > BG(k,2) > Ber2” — Bey.

So we have

jim &2 9k 2)

Z—00 zZ Z—00 VA

= 00.
That is f(k, z), g(k, z) are superlinear at oo.

REMARK 1.3. By assumption (H1) and (H3), we can obtain f(k,0) =
g(k,0) = 0 and (z(k),y(k)) = (0,0) is a trivial solution of the system
(P).
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2. Preliminaries

Let the class H of functions z : [0,7 4+ 1] — R such that z(0)
z(T+1) = 0 is a T-dimensional linear space with inner product (z, ¢)

T
Z z(k ),Va,¢ € H, and the corresponding norm by
=1

T 3
lllz = (Z x2(k)> Vz € H.
k=1

It is easy to obtain (H, (,)) is a T-dimensional Hilbert space and homo-
morphism with RT. Consider E is Cartesin product of H x H and the
natural inner product on F is given by

T

((z,0), (2, V) e = D _(@(k)o(k) + y(k)¥(k)), Yoo, ¥ € H.

k=1

The norm of an element (z,y) € E is defined by ||(z,y)|lg = (|lzl|% +
llyl|%,)2. Define the functional I : E — R by

T+1 T
(2.1) I(z,y) = > (Ax(k—1)Ay(k—1)) =D _(F(k,z(k)) -Gk, y(k))).
k=1 k=1

By the assumption (H1), the functional I is well defined and I €
CY(E, R) with

T+1

I'e,w), () = 3 (Ac(k— DAY - 1)
k=1
+Ay(k — 1)Ap(k ~ 1)

T
=D (fk,2(k))e(k) + (9(k, y (k) (K))
k=1

T+1

(2.2) = = (A%(k - 1)k - 1)
+A%y(k — 1p(k - 1))

T
= (f(k, z(k))p(k) + (g(k, y(k))p(K)).
k=1
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So solutions of the system (P) are precisely the critical points of the
functional I.

DEFINITION 2.1. A functional I € C(E, R) is said to satisfy (PS)
condition, if there exists c3 > 0, every sequence (Zn,Yyn) € E such that

(2.3) I(Zn,yn) < c3,I'(zp,yn) — 0 as n — o0,
has a strongly convergent subsequence in E.

LEMMA 2.2. Let uj,v; >0,5=1,2,...,T,p>1,¢>1, and}ngr% -
1. Then

Q=
e

T
Zum Zu +{ 2y
j=1

From Lemma 2.2, we can deﬁne another norm in H,

T P
]l = (Z |3?(k)|p> ,Vz € H,
k=1

and it is easy to obtain that there exist two positive constants cy,cs > 0
such that

(2.4) callzlly < llzlla < cslzflp-

LEMMA 2.3. (Minimax principle, Chang [3]) Suppose I € C*(E, R)
is bounded above and satisfies (PS) condition, then sup,¢p I(u) = co is
attained at the critical point of I.

Let ET = {(z,z) : 2 € H} and E~ = {(x, —a:) x € H}. Then there
exists direct decomposition F = Et @ E~, where ET,E~ are finite
dimensional space.

LEMMA 2.4. (Linking theorem, Rabinowitz [5]) Let p > r > 0 and
let eqg € ET be such that |leg||p = 7. Define

M={u=w+Xey: |Julg <p,A>0,we E}
OM={u=w+MXeg:2€ E,|jullg=p,A>0,0r |lul|g < p,A =0},
N={ucE":||ulg=r}.
Let I € CY(E,R) be such that infy I > maxgpy I. If I satisfies (PS)
condition with

C—;relggggﬁf( y(u),L = {y € C(M,E) : v|om = 1d}.

Then c is a critical value of I.
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3. Proof of Theorem 1.1

In this section, we will prove the main theorem by using Lemma 2.3
and Lemma 2.4.

Lemma 3.1. If f(k,z),g(k,z) satisfy assumption (H3), then the
functional I(z,y) is bounded above in E.

Proof. By (1.3), we have
T+1
I(w,y) = » (Az(k-1)Ay(k-1)) -
Tr1
= > (a(k) =2k — 1) (y(k) —y(k — 1))
k=1

—Z F(k,z(k)) + G(k, z(k)))

(F(k, z(k)) + G(k, z(k)))

NE

b
Il

1

[(2(k) —2(k — 1)) + (y(k) — y(k — 1))*]

<
k 1
—c1§j|x P+ ly(®)) + 2T
T+1
< D l@R0) + a2k = 1) + (W3 (k) + (b — 1))
k=1

~a1 Z(lw P+ () + T

< éli(x,y)HE ~ csll(z, y)llp + er,

where cg, c7 are constants. From 8 > 2, there exists K > 0 such that
I(z,y) < K,Vz,y € E.

)

LEMMA 3.2. If (H1) and (H3) hold, the functional I satisfies (PS)
condition.

Proof. Let (z,y) C E such that

I(l‘nayn) < C37ll(x’n7yn) - 07 n — oo.
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From I'(zn,y,) — 0, we have

T+1

(I (@, Yn)s (o)) = 2 (Azn(k — 1)Ayn(k — 1))
k=1

(£l 2 (k) (k) + (ks g (8) ()

?Tlﬂﬂ

< II(wn,yn)llE
On the other hand
T41 T
Hzp,yn) = > (Azn(k—1)Ayn(k~1)) Z (k, (k) + G(k, yn (k)))-

k=1 k=1
Taking (H1) and (H3) into account, we get

671“(m'n7 yn)“E + /803 Z ﬂ](.’ﬂn, yn) - <I/("L'n) yn)’ (mn; y’n)>
T+1

= (8-2)) (Aza(k - 1)Ayn(k - 1))

k=1

T
+Z f(k, zn(k))zn(k) + g(k, yn(k))yn(k))
k=1

T
—B Y (F(k,zn(k)) + G(k, yn(k)))
k=1

T+1

> (8-2)) (Azn(k —1)Aya(k — 1)) +56,

k=1
where ¢ is a constant. By the equation (1.3) in (2], we can define another
norm in H
T+1
(@, 0) = > (Az(k — 1)Ap(k — 1)),Vz,0 € H.
k=1
Since H is a finite dimensional Hilbert space and all norms on finite
dimensional space are equivalent, there exists cg > 0 such that
T+1
> (Azp(k — 1) Ayn(k — 1)) > csll(z, )3
k=1

So (zn,yn) C E is a bounded sequence. In a standard way, there exists
a strong converge subsequence. O
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LEMMA 3.3. There exist r > 0 and & > 0 such that infy I > « > 0.

Proof. By (H2), for given € > 0, there exists ¢ > 0 such that

(3.1) F(k,2),G(k,z) < c:|2|%,V|z| < r.
For any u € N, there is € H with u = (2, z). From (3.1), we have
T+1 T
I(wx) = Y (Az(k—1)* = (F(kz(k)) + Gk z(k)))
k=1 k=1

T
1
> §a:TAx - 2¢; I;x2(k),

where z = (z(1),2(2),...,z(T)) and

(2 -1 0 0 0

-1 2 -1 0 0

0 -1 2 0 0

A= 2 -1 0 0 0
0 0 0 - -1 2 )

It is obvious that A is a positive-definite symmetric matrix. Let 0 <
A1 € Ag < -+- < Ar denote the eigenvalue of the matrix A and ¢, = %/\1.
Then we obta.n

: 1 1 1
Iz, z) > 5/\1“@"”%{ - 2§>\1H$H§q = ZAllliBH%-

Let o = %/\17‘2. Then
I{u) =I(z,z) > a>0,Yu=(z,2) € N.
O

LEMMA 3.4. There exist positive constant p,r and p > r such that
maxgys I = 0.

Proof. If uw € OM, then u = w + Aeg with either ||Jullg = p,A > 0 or
lullg < p, A = 0. Suppose A = 0. Then we have u € E~,u = (z, —x)
and

T+1 T

I(z,—z) = Y (Ax(k—1))* = > (F(k,z(k)) + G(k,z(~k))) <0,

k=1

k=1
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because F(k,z(k)) + G(k,z(—k)) > 0 by assumption (H2). Let ey =
(e,e). If u= (z,—x) + A(e,e) € IM with |ju||g < p, then

T+1 T+1

I(w) = M) (Ae(k-1))" =D (Az(k—1))

k=1 k=1
- Z (k, Ae(k) + z(k)) + G(k, he(k) — z(k))).

By (1.3), there exist ¢1,c2 > 0 such that
(3.2) F(k, de(k) + z(k)) > ecr(he(k) + z(k))? — ¢z,
(3.3) G(k, Ne(k) — z(k)) > c1(Ne(k) — z(k))? — ca.
From (2.4), (3.2) and (3.3), we obtain

Iw) < M2—a Y [Oelk) +a(k)? + (k) - a(k))?] + 22T

IA

8 T
Nr? — ¢ (é) [(Z()\e(k) + z(k))?)P/?
k=1
T B/2
—c <Z(Ae(k) - m(k))2>
k=1

B/2
= A\ —201( ( > (WeP(k )+x2(k))> + 2¢,T

< ANr?_2q ( ) /\2r2 + ||z( )||2 )5/2 4+ 2¢,T

+ 202T

1
< A2 — 2c1 (05) (/\27'2 + ”33( )”IIB-I) + 2¢T

Finally taking p > A > 0 and 8 > 2, we have maxgpys I = 0. From
Lemma 3.3 and Lemma 3.4, the geometry of the Linking theorem is
satisfied. O

The proof of theorem 1.1. In view of Lemma 3.1 and lemma 3.2,
there exist 7,7 € F such that I(Z,7) = co = sup(; ,\ep (2, y) is a crit-
ical value of the functional I by using Lemma 2.3 (Minimax principle).
From Lemma 3.2, Lemma 3.3, Lemma 3.4, we can apply the Linking the-
orem (Lemma 2.4), it follows that the functional I has a critical value ¢ >
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a > 0 and, hence there exist (Z,7) € E and I(z,y) = c¢. Suppose (Z,7y) #
(%,7), theorem 1.1 is valid. Suppose not. Then we have ¢ = I(Z,7y) =
I(Z,7) = co, that is, sup(, e g I (2, y) = infyer maxyeon I(y{w)). Choo-
sing v = id, we obtain sup,cgpr I(v) = cp. Let —eg € ET. Then, similar
to Lemma 3.4, there exist p’ > r > 0 such that I(u)|yeconr < 0, where
M = {u=w+ A~ep) : |Jullg < p,A > 0,w € E~}. Using linking
theorem again, there exists critical value ¢* = infyep maxyean I(7(u)),
where IV = {~/ € C(M',E) : ¥'|ops = id}. If ¢* # ¢p, theorem 1.1
is completed. If not, we have ¢* = ¢y and sup,ep I(u) = co. From
I{u)|ueonrr < 0 and I(u)|yesnsr < 0, the functional I attains maxi-
mal value in the interior of the set M and M’, on the other hand,
(MNM')yc E™ and I(u) < 0,Yu € E~. These imply that there exists
(z,9) € E,(Z,7) # (Z,7) and I(Z,7) = ¢* = ¢p. So the system (P) have
two nontrivial solutions. O
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