Browse > Article
http://dx.doi.org/10.12989/sem.2009.33.5.543

Crack identification in short shafts using wavelet-based element and neural networks  

Xiang, Jiawei (School of Mechantronic Engineering, Guilin University of Electronic Technology, State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University))
Chen, Xuefeng (State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University))
Yang, Lianfa (School of Mechantronic Engineering, Guilin University of Electronic Technology)
Publication Information
Structural Engineering and Mechanics / v.33, no.5, 2009 , pp. 543-560 More about this Journal
Abstract
The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval (BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by non-dimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model of rotor system is constructed to solve the first three natural frequencies functions of normalized crack location and depth. The normalized crack location, normalized crack depth and the first three natural frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis. Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.
Keywords
short shaft; wavelet-based element; neural networks; crack identification;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J. (1978), 'A vibration technique for non-destructively assessing the integrity of structures', J. Mech. Eng. Sci., 20(2), 93-100   DOI   ScienceOn
2 Canuto, C., Tabacco, A. and Urban, K. (1999), 'The wavelet element method part I: Construction and analysis', Appl. Comput. Harmon. A., 6, 1-52   DOI   ScienceOn
3 Canuto, C., Tabacco, A. and Urban, K. (2000), 'The wavelet element method part II: Realization and additional feature in 2D and 3D', Appl. Comput. Harmon. A., 8, 123-165   DOI   ScienceOn
4 Cho, H.N., Choi, Y.M., Lee, S.C. and Hur C.K. (2004), 'Damage assessment of cable stayed bridge using probabilistic neural networks', Struct. Eng. Mech., 17(3-4), 483-492   DOI   ScienceOn
5 Chui, C.K. and Quak, E. (1992), 'Wavelets on a bounded interval', Numer. Method. Approx. Theory, 1, 53-57
6 Dimarogonas, A.D. (1996), 'Vibration of cracked structures: a state of the art review', Eng. Fract. Mech., 55(5), 831-857   DOI   ScienceOn
7 Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), 'A summary review of vibration-based damage identification', Shock Vib., 30(2), 91-105   DOI   ScienceOn
8 Goswami, J.C., Chan, A.K. and Chui, C.K. (1995), 'On solving first-kind integral equations using wavelets on a bounded interval', IEEE T. Antenn. Propag., 43, 614-622   DOI   ScienceOn
9 Gounaris, G. and Dimarogonas, A.D. (1988), 'A finite element of a cracked prismatic beam for structural analysis', Comput. Struct., 28, 309-313   DOI   ScienceOn
10 Green, I. and Casey, C. (2005), 'Crack detection in a rotor dynamic system by vibration monitoring-Part I: Analysis', J. Eng. Gas Trub. Power, ASME, 127, 425-436   DOI   ScienceOn
11 Han, J.G., Ren, W.X. and Huang, Y. (2006), 'A spline wavelet finite element method in structural mechanics', Int. J. Numer. Meth. Eng., 66, 166-190   DOI   ScienceOn
12 Kisa, M., Brandon, J. and Topcu, M. (1998), 'Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods', Comput. Struct., 67, 215-223   DOI   ScienceOn
13 Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), 'Neural networks-based damage detection for bridges considering errors in baseline finite element models', J. Sound Vib., 280, 555-578   DOI   ScienceOn
14 Lee, Y.S. and Chung, M.T. (2000), 'A study on crack detection using eignfrequency test data', Comput. Struct., 77, 327-342   DOI   ScienceOn
15 Lele, S.P. and Maiti, S.K. (2002), 'Modeling of transverse vibration of short beams for crack detection and measurement of crack extension', J. Sound Vib., 257(3), 559-583   DOI   ScienceOn
16 Liu, S.W., Huang, J.H., Sung, J.C. and Lee, C.C. (2002), 'Detection of cracks using neural networks and computational mechanics', Comput. Meth. Appl. Mech. Eng., 191, 2831-2845   DOI   ScienceOn
17 Montalvao, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006), 'A review of vibration-based structural health monitoring with special emphasis on composite materials', Shock Vib., 38(4), 1-30
18 Murigendrappa, S.M., Maiti, S.K. and Srirangarajian, M.R. (2005), 'Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies', Struct. Eng. Mech., 21(6), 635-658   DOI   ScienceOn
19 Nandwana, B.P. and Maiti, S.K. (1997), 'Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies'. J. Sound Vib. , 203(3), 435-446   DOI   ScienceOn
20 Nelson, H.D. (1980), 'The dynamics of rotor-bearing systems using finite element', J. Mech. Des., ASME, 102, 793-803
21 Sekhar, A.S. and Srinivas, B.N. (2002), 'Vibration characteristics of slotted shafts', J. Sound Vib., 251(4), 621-630   DOI   ScienceOn
22 Owolabi, G.M., Swamidas, A.S.J. and Seshadri, R. (2003), 'Crack detection in beams using changes in frequencies and amplitudes of frequency response functions', J. Sound Vib., 265, 1-22   DOI   ScienceOn
23 Papadopoulos, C.A. and Dimarogonas, A.D. (1987), 'Coupled longitudinal and bending vibrations of a rotating shaft with an open crack', J. Sound Vib., 117(1), 81-93   DOI   ScienceOn
24 Qu, W.L., Chen, W. and Xiao, Y.Q. (2003), 'A two-step approach for joint damage diagnosis of framed structures using artificial neural networks', Struct. Eng. Mech., 16(5), 581-595   DOI   ScienceOn
25 Sinou, J.J. (2007), 'A robust identification of single crack location and size only based on pulsations of the cracked system', Struct. Eng. Mech., 25(6), 691-716   DOI   ScienceOn
26 Tada, H., Paris, P.C. and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook (3rd edition). New York, ASME Press
27 Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2006a), 'The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval', Finite Elem. Anal. Des., 42, 1269-1280   DOI   ScienceOn
28 Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2007a), 'Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval', Struct. Eng. Mech., 25(5), 613-629   DOI   ScienceOn
29 Xiang, J.W., Chen, X.F., He, Z.J. and Dong, H.B. (2007b), 'The construction of 1D wavelet finite elements for structural analysis', Comput. Mech., 40(2), 325-339   DOI
30 Xiang, J.W., Chen, X.F., He, Z.J. and Zhang, Y.H. (2007c), 'A new wavelet-based thin plate element using Bspline wavelet on the interval', Comput. Mech., 41(2), 243-255   DOI
31 Xiang, J.W., Chen, X.F., Li, B., He, Y.M. and He, Z.J. (2006), 'Identification of crack in a beam based on finite element method of B-spline wavelet on the interval', J. Sound Vib., 296(4-5), 1046-1052   DOI   ScienceOn
32 Xiang, J.W., Chen, X.F., Mo, Q.Y. and He, Z.J. (2007), 'Identification of crack in a rotor system based on wavelet finite element method', Finite Elem. Anal. Des., 43(14), 1068-1081   DOI   ScienceOn
33 Yuan, S.F., Wang, L. and Peng, G. (2005), 'Neural networks method based on a new damage signature for structural health monitoring', Thin Wall. Struct., 43, 553-563   DOI   ScienceOn
34 Zachiarias, J., Hartmann, C. and Delgado, A. (2004), 'Damage detection on crates of beverages by artificial neural networks trained with finite-element data', Comput. Meth. Appl. Mech. Eng., 193, 561-574   DOI   ScienceOn