• Title/Summary/Keyword: linear functions

Search Result 1,586, Processing Time 0.02 seconds

An Orthogonal Representation of Estimable Functions

  • Yi, Seong-Baek
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.837-842
    • /
    • 2008
  • Students taking linear model courses have difficulty in determining which parametric functions are estimable when the design matrix of a linear model is rank deficient. In this note a special form of estimable functions is presented with a linear combination of some orthogonal estimable functions. Here, the orthogonality means the least squares estimators of the estimable functions are uncorrelated and have the same variance. The number of the orthogonal estimable functions composing the special form is equal to the rank of the design matrix. The orthogonal estimable functions can be easily obtained through the singular value decomposition of the design matrix.

Non-linear rheology of tension structural element under single and variable loading history Part I: Theoretical derivations

  • Kmet, S.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.565-589
    • /
    • 2004
  • The present paper concerns the macroscopic overall description of rheologic properties for steel wire and synthetic fibre cables under variable loading actions according to non-linear creep and/or relaxation theory. The general constitutive equations of non-linear creep and/or relaxation of tension elements - cables under one-step and the variable stress or strain inputs using the product and two types of additive approximations of the kernel functions are presented in the paper. The derived non-linear constitutive equations describe a non-linear rheologic behaviour of the cables for a variable stress or strain history using the kernel functions determined only by one-step - constant creep or relaxation tests. The developed constitutive equations enable to simulate and to predict in a general way non-linear rheologic behaviour of the cables under an arbitrary loading or straining history. The derived constitutive equations can be used for the various tension structural elements with the non-linear rheologic properties under uniaxial variable stressing or straining.

Non-linear distributed parameter system estimation using two dimension Haar functions

  • Park Joon-Hoon;Sidhu T.S.
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.187-192
    • /
    • 2004
  • A method using two dimension Haar functions approximation for solving the problem of a partial differential equation and estimating the parameters of a non-linear distributed parameter system (DPS) is presented. The applications of orthogonal functions, including Haar functions, and their transforms have been given much attention in system control and communication engineering field since 1970's. The Haar functions set forms a complete set of orthogonal rectangular functions similar in several respects to the Walsh functions. The algorithm adopted in this paper is that of estimating the parameters of non-linear DPS by converting and transforming a partial differential equation into a simple algebraic equation. Two dimension Haar functions approximation method is introduced newly to represent and solve a partial differential equation. The proposed method is supported by numerical examples for demonstration the fast, convenient capabilities of the method.

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

A Study on the Extension of Fuzzy Programming Solution Method (Fuzzy 계확법의 해법일반화에 관한 연구)

  • 양태용;김현준
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1986
  • In this study, the fuzzy programming is extended to handle various types of membership functions by transformation of the complicated fuzzy programming problems into the equivalent crisp linear programming problems with single objective. It is well-known that the fuzzy programming problem with linear membership functions (i.e., ramp type) can be easily transformed into a linear programming problem by introducing one dummy variable to minimize the worst unwanted deviation. However, until recently not many researches have been done to handle various general types of complicated linear membership functions which might be more realistic than ramp-or triangular-type functions. In order to handle these complicated membership functions, the goal dividing concept, which is based on the fuzzy set operation (i. e., intersection and union operations), has been prepared. The linear model obtained using the goal dividing concept is more efficient and single than the previous models [4, 8]. In addition, this result can be easily applied to any nonlinear membership functions by piecewise approximation since the membership function is continuous and monotone increasing or decreasing.

  • PDF

SOME RELATIONS ON PARAMETRIC LINEAR EULER SUMS

  • Weiguo Lu;Ce Xu;Jianing Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.985-1001
    • /
    • 2023
  • Recently, Alzer and Choi [2] introduced and studied a set of the four linear Euler sums with parameters. These sums are parametric extensions of Flajolet and Salvy's four kinds of linear Euler sums [9]. In this paper, by using the method of residue computations, we will establish two explicit combined formulas involving two parametric linear Euler sums S++p,q (a, b) and S+-p,q (a, b) defined by Alzer and Choi, which can be expressed in terms of a linear combinations of products of trigonometric functions, digamma functions and Hurwitz zeta functions.

Robust stability analysis of uncertain linear systems with input saturation using piecewise Lyapunov functions (불연속 리아푸노프 함수를 이용한 입력제한이 있는 불확실 선형 시스템의 안정성 해석)

  • Lee, Sang-Moon;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.131-134
    • /
    • 2003
  • In this paper, we consider the problem of finding the stability region in state space for uncertain linear systems with input saturation. For stability analysis, two Lyapunov functions are chosen. One is for the lineal region and the other is for the saturated legion. Piecewise Lyapunov functions are obtained by solving successive linear matrix inequalites(LMIs) relaxations. A sufficient condition for robust stability is derived in the form of stability region of initial conditions. A numerical example shows the effectiveness of the proposed method.

  • PDF

A Review of the Role of Domain in Representational Activities for Forming the Concept of Linear Functions (일차함수의 개념형성을 위한 표상활동에서 정의역의 역할에 대한 고찰)

  • Kim, Jin-Hwan
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.49-65
    • /
    • 2010
  • The purpose of this study is to encourage the role of domain to consider the teaching of the concept of functions in modeling real situations. To do this, it is analyzed that how to introduce the concept of functions and linear functions in textbooks treated in the 1st grade and the 2nd grade of middle school. This study also reviewed the role of domain in representational activities for modeling real situations using linear functions. In these reviews, it found that many textbooks do not consider the domain in the equations of functions and these graphs and several text books used linear functions for modeling real situations which are not represented by linear functions contextually. It is concluded that the domain of function is an important concept that will be considered any representational activities for functions.