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CHARACTERIZATION OF BEST APPROXIMANTS 
FROM LEVEL SETS OF CONVEX FUNCTIONS IN 

NORMED LINEAR SPACES

S. S. Dragomir

Abstract Some new characterization of best approximants from 
level sets of convex functions in normed linear spaces m terms of 
norm derivatives are given

1. Introduction

Let (X, ||-||) be a real normed space and consider the norm deriva­

tives

（""。시 E"）
2t

Note that these mappings are well defined on X x X and the fol­

lowing properties are valid (see also [1], [3]):

(1)(払0)2 = —(一叫 0)s if are in X;

(h) (%, x)p = \\x\f for all x in X;

(iii) 时)卩 — 아3 3,y)p for all x^y in X and a/3 > 0,

(iv) (ax + y, x)p = a )|x||2 + (?/, x)p for all m X and a a real

number,

(v) {x + y, z)p < II시I • ||z|| + (y, z)p for all x, y. z in X,

(vi) The element ⑦ in X is Birkhoff orthogonal over g in X (we

denote x±y(B)), i e , \\x + ty\\ > ||rr|| for all t a real number iff 

.S)z < 0 < (?")”

(vii) The space X is smooth iff (y,x)z = (y,x)s for all x.y in X iff 

(•, jp is linear in the first variable,
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where p — s or p = t.

Now, let (X, ||-||) be a normed linear space and G a nondense subset 

in X, Suppose z()C X \ Cl(G) and gQ G G.

Definition 1.1. The element go will be called the best approxima­

tion element of xQ in G if

(1-1) 他0 — go|| =哽|恤0 — g||

and we shall denote by Pg (^o) the set of all elements which satisfy 

(1-1)

The mam aim of this paper is to prove some characterization of 

best approximants from the level sets of continuous convex mappings 

in normed linear spaces.

For the classical results m domain, see the monograph [4] due to 

Ivan Singer

2. The Results

Now, let us denote by

F- (r) •= (x € X . F (x) < r}, r € R

the r~level set of F and assume that r is such that F- (r) is nonempty

The following theorem characterizes best approximants by elements 

of the level set F- (r). This result can also be viewed as an estimation 

theorem for the continuous convex mappings defined on a no호med 

space in terms of semi-inner product (•, -)t.

Theorem 2.1. Let (X, ||-||) be a normed linear space, F : X T 1R 

a continuous convex mapping on X, r G R such that F- (r)辛弋C 

X\F- (r) and g° G F~ (r). The following statements are equivalent.

(i) go C So),

(ii) We have the estimation

(2 1) F{x')>t + 与㈣一一7^- (x -伽,xq 一 go), for all x e F- (r),
I岡-9o\\2
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or, equivalently, the estimation

(2-2)

F(x)>F (x0) + 马㈣——~ {x - x0,x0 - g0)l for all x E F- (r).
|恤0 - go"

Proof "(z) n (zz)”. Let us observe first that as xq G X\F- (r), we 

have that F (瓦)> r.
Now, let x G F- (r). Then F (rr) < r and if we choose

a — F (x0) — t.P r — F (x)

then obviously o； > 0,/3 > 0 and 0 < a + /3 = F (x0) 一 F (x)

Let us consider the element

ax + (3xq 
u :—----- --

a +。

Then, by the convexity of F we have

aF (x) + (3F (to) _ (F (初))~ r) F (x) + (r - F (x))F (xQ) _ 
(이 - 两顼 - F(^o)-F(x) -

which shows that u E F- (r).

As go € (⑦o) and F~ (r) is a convex set, we get that

ll^o — 5o||2 色 ll^o 一((1 — t)9Q + 切)||2

for each g e F~ (r) and t E [0,1].

Denoting wQ :二二 xQ 一 gQ and uQ := g° — g we get ||w0||2 < ||w0 + 切妇卩 

for all t € [0,1], which implies that

(归。+ 灿)||2 —|"|2) z o for all t G (0, 1]

2i

Letting t —> 0+ we deduce (tz0, w0)s > 0, which is equivalent to (g — 

go, XO 一 x0), < 0 for all g e F- (r)

Choose g = iz,where u is defined as above. Then

(2 3^ (M-r)x + {r-F(x))x0 A <Q
(2-3) (-------戸(苟二E (”---------如如一 ％九京
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r +

r +

r +

for all x E F~ (r). However,

((F ㈤-r)rr + (r - F (x)) x0 A( F(x0)-F(r) g。，瓦—g。/

F( 一 F (时)(知-go) + (F (瓦)-r)(x 一 g0),x0 - g0\

"「m、(r — F (游)|旧0 — 伽||2 + (F (处)-r) (z - g。，x0 一 免)， 
F(zo) - F{x)

and then, by (2.3), we obtain

(r - F(z))||so — golF + (F (rc0) 一 r)(专 一 go,z()一 g" > 0

which is equivalent with the desired estimation (2 1)

Now, let us observe that

F㈤-r
同F(z — g。,如一 g成

F (rr0) 一 厂 / 、
||勺_阳|冲—瓦+ zo -如边-雄

仰쩌 II； [(Z — ^0, 如 一 go)z + |岡 - t?o||2]
|岡-9q\\

=「+ 叩。)-「+胸_排(f

= F (瓦) +으" £ (0 — 乩, 瓦 一 ,ll^o -5olr
which shows that (2.1) and (2.2) are equivalent.

“(zz) => (z)”. As re e F- (r), then 0 > F (x) — r

On the other hand, by (2.1) we have

F{x) - r> +~^-_77^ 3 — go, no — go)，

I岡 一 9Q\r

for all x E F- (r). Consequently,

0 > 芝으)_~~ (x 一 如，瓦 一 g" 化호 all x eF- (r) .

Iro 一 5oir
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As F (如)—r > 0, we get

0 > (rr -如，z0 一 go> for all x e F- (r)； 

which is clearly equivalent to

(2.4) (灸-x,xQ~ g°)s > 0 for all x E F- (r)

A simple calculation shows that

(go — ：奶⑦o — go)s = (%一 ⑦一(旳 一 go),【如—go"

=(瓦—x^Xq — go" — ||^o — go|F

and then, by the above inequality, we deduce

(2 5) (乩一气的 一 g°)s > ||g()- rr0||2 for all x e F- (r)

On the other hand, by Schwarz3s inequality we have

(2 6) II乩-x II II 的 一 g()|| > (rr0 一 气⑦o — go)s

and then (2 5) and (2.6) yield that \\x()— x\\ > ||go — xG\\ for all 

x e F~ (r), and the theorem is proved. □

Remark 2 2. If gQ € 毎*)(t0) , 난xen F(go) = r. Indeed, as g° E 

F- (r), then F(^o) VOn the other hand, choosing z = go in (2 1) 

we get F(g〔)) > r, and then the required equality holds

For other recent results concerning the estimation of linear func­

tionals or sublinear functionals m terms of semi-mner products, see 

the papers
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