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Non-linear distributed parameter system estimation
using two dimension Haar functions

Joon-Hoon Park, Member, KIMICS, T.S. Sidhu, Nonmember

Abstract—A method using two dimension Haar functions
approximation for solving the problem of a partial
differential equation and estimating the parameters of a
non-linear distfibuted parameter system (DPS) is presented.
The applications of orthogonal functions, including Haar
functions, and their transforms have been given much
attention in system control and communication engineering
field since 1970’s. The Haar functions set forms a
complete set of orthogonal rectangular functions similar
in several respects to the Walsh functions. The algorithm
adopted in this paper is that of estimating the parameters
of non-linear DPS by converting and transforming a
partial differential equation into a simple algebraic equation.
Two dimension Haar functions approximation method is
introduced newly to represent and solve a partial
differential equation.

The proposed method is supported by numerical
examples for demonstration the fast, convenient capabilities
of the method.

Index Terms—estimation of non-linear DPS, Haar
transform, operation matrix, two dimension Haar functions
approximation.

L. INTRODUCTION

Since 1970s, orthogonal transforms and their applications,
such as Walsh, block pulse and Haar have been developed
and used for solving analysis and optimization problems
of dynamic systems. The basic theory of orthogonal
transforms is to convert a ordinary and partial differential
equation into an algebraic equation and operation matrices
of integration are applied to simplify the problems.
Parasekevopoulos and Bounas!'! propose a method of
identifying the parameters of linear time invariant DPS
using Walsh functions. But application of this method is
limited to a first-order partial differential equation.
Tzafestas and Stavroulakis'™ introduce Walsh and block
pulse operational matrices for distributed parameter and
delay systems. Sinha and Rajamani™ apply the double Walsh
series for estimating the parameters of non-linear DPS.

In this paper the problem of non-linear DPS estimation
via Haar transform is considered and the two dimension
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Haar functions approximation concept for solving the
problem of partial differential equation is introduced.
Appropriate numerical examples are included to illustrate
the use of the proposed method.

II. HAAR FUNCTIONS

The Haar functions form an orthogonal and orthonormal
system of periodic square waves. The amplitude values
of these square waves do not have uniform value, as with
Walsh waveforms, but assume a limited set of values, 0,

1, +.2, +2, +242 etc. If we consider the time

base to be defined as 0<¢<1 then, the set of Haar
functions is described as follows. And the waveform of
first eight Haar functions is shown in Fig. 2-1.1%
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Fig. 2-1 The first eight Haar functions
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By adopting a different definition for the series, we can
write Haar functions as follows:
mo,n=1 for 0<r<1

J2' for j—_.lsts(j—i)/f

h(i, j, )= —\/2_' for

0 elsewhere

1 ; j
-=)/2' <t L
¢ 2) 5

Then the Haar functions can be referred to by order j
and degree i as well as time z. The degree i denotes a
subset having the same number of zero crossing in a
given width 1. The order j gives the position of the

2i
function within this subset.
From the definition in equation (2-1) and (2-2), it can

be seen that the Haar functions are orthogonal, thus

1 for m=n (2-3)

j h(m, h(n,£) = {0 o

m+n

It is more convenient to express the waveform of Haar
functions by matrix form. For instance, the first four
Haar functions H, has the form

Ho] [1 1 1 1
H=|H@0| |1 1 -1 -1 (2-4)
H,| V2 -v2 0 o
HoOl o o 2 -2
ITII. HAAR TRANSFORM

A. Haar transform
A function f{#) is absolutely integrable on ¢ €[0,1],

then it can be expanded as an infinite series in term of
Haar functions.”

Where £ is the ith sequentially ordered coefficient of
the Haar functions expansion of function f{2) and h, is

the ith order Haar functions. The coefficient of the Haar
functions expansion is given as equation (3-2)

£ = [fonwa 32)

Now an approximate transform of f{#) in terms of the first
n terms of the Haar functions and its matrix expression
can be written as follows:

70 =5 1) = ETH, @) (33)

Where . is coefficient vector of fft) and p (y) is its Haar
functions vector. 7 denotes transposition.

B. Two dimension Haar functions approximation

To solve a partial differential equation of two variables
two dimension Haar functions approximation concept is
introduced newly. Consider a function f{x,z) of two
variables on x e[0,1] and ¢ ¢[0,1]. The Haar functions

can approximately represent it with respect to .
O EWACI0) (-4)
=0
We can approximate equation (3-4) as equation (3-5).
[0 = Zf (), (1) (-5
i=0

Using the orthonormal property of Haar functions, the
coefficient functions z () of equation (3-5) is

fi(x)= ljf (x, )b, (t)dt (3-6)

And Haar functions approximation of fi(z) gives

m-1

50=5n7, -7
j=0

where hj (x) are Haar functions with respect to x. The

coefficients £ are obtained by

= f h, (), (x)dx = j: Jj S th (0)h,(x)dxdt (3-8)

Therefore two variables function f{x,z) can be
approximated as equation (3-9) using the two dimension
Haar functions approximation method.

m=1 n-1

fen=Y

j=0 =0

T @Oy, )= H, " (F,H,0) G

.

C. operation matrix

The integrations of Haar functions with respect to time
t form a ramp and triangular waveforms. And they are
related approximately to the Haar functions matrix
itself!"" We can describe integrals of Haar functions in
mathematical form

[H,(0dr = P,H, (1) (3-10)
0
Pn n _Ln—%H nn i
P = &2 V2 G G-11)
Ln_% H, ., 0
2 5 D)
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where P, is the operation matrix of Haar functions for

integration. For example, P, is obtained as follows!®:

(3-12)

oo
I}

LN SR
an

Repeated application of P, for the m times repeated
integration implies that

ﬂﬁ: '''' L H,(H)d" =P"H, ()  (3-13)

IV. ESTIMATION OF NON-LINEAR
DISTRIBUTED PARAMETER SYSTEMS

A. Linear DPS
Consider a simple linear DPS described by the following
partial differential equation.

+oy(x.t) =ulx,t) (@1

o B0 | D
ot ox

Where ¢, c;and c; are unknown system parameters to
be identified. And wu(x,¢) and y(x,t) are two variables
input and output functions.

We try to identify the system parameters of equation
(4-1) by Haar transform for x € [0,1] and ¢ € [0,1]

Integration of equation (4-1) with respect to r and x gives

G .[: y(x,)dx+c, fo' W(x, O)dt +c, J: J.Ox e Dt
—¢, [} 0)de—c, [ (0,0t = [ [ ulx, ydxdr  (4-2)

where y(x,0) and y(0,¢) are unknown initial and boundary
condition.

According to the two dimension Haar functions
approximation of equation (3-9), y(x,t) and u(x,?) are
given by equation (4-3) and (4-4). U,, is coefficient
vector of u(x,¢) and Y,,, is coefficient vector of y(x,2)

m=ln-1

u(x,0) =3 > uh(Oh(x) = H, ()U,,H,{)

=H (U, H,(x) (4-3)

m-1 n-1

y(x, )= Zzyﬁh,-(t)hj(x)

j=0 i=0

=H, 0, HO=H O, H(x)  (44)

Also, we can approximate the unknown y(x,0) and y(0,1)
using Haar transform as follows:

y(x,0) = Zd h(x) = Z dH," ()F, ,H,@0 &5

w00 =S eny=S e, R, H,@) @6

Where F, is an matrix having the (i,j)th element unity

and the remaining elements zero. d; is coefficient vector
of y(x,0) and ¢; is coefficient vector of y(0,2).

Substituting (4-3)-(4-6) into (4-2), then equation (4-2)
can be arranged and written as following form:

H, (0l B, Y, + Y, F, +e,Pu' ¥,

n n-n

g-1 | p-1
-, > dPF, —c,) e,  PIH, ()
i=0 i=0

=H, ([P, U,.PH, (1) (4-7)

Applying the orthonormal property of Haar functions, we
can simplify equation (4-7).

¢P'Y, +cY, P +c,Pu ¥,P,

n

q-1 p-1
- clz diPmTF;H,l - CZZ eiF P = PmTUmnPn (4-8)
i=0 i=0

Li+1* n

Then equation (4-8) can be written in the form
Ké=r 4-9)

where K is the mnx (¢, + ¢, + ¢, + ¢ + p) matrix of known

elements, @ is the vector of unknowns and r is the mn
vector of known elements.

(PmTYmn)l (YmnPn)l (PmYmnPn)l (E,an)l
P V)2 TPy (BYmB)y  (FuP),

m*mn

K= : : : :
(PmTymn)n—l (YmnPn )n—l (PmYmnPn )n—l (E,an)nAl
(PmTYmn)n (YmnPn)nl (PmYmnPn)n (E,an)n
(Fab) (FuF), (Fp P
(FuB),  (FyR), - (R,B), (4-10)
- Fpl)n (Fub)e - (F,B).
(FaP),  (Fyh), (B, B)n

g-1 p-1

T

0" =lc, ¢, ¢ _clzdi —CZZei],
=0 i=0

T

£ Upnb)y
T

(Pm Umn ’n)2

r= :

(P, "U,.P),.,

mn*n

(P UpP),

mntn

(4-11)

Where (o), denotes an ith vector of the matrix K and r.

The equation (4-9) can be solved with the least square
method as following equation (4-12). In this case, K"K
is invertible.
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6=(KTK)'Kr- 4-12)

The solution directly gives the system parameters c,,
¢; and ¢3;, while the Haar functions coefficients are
determined. And then we can estimate the initial and
boundary condition in equation (4-5) and (4-6) using the
determined 4,ande,.

B. Non-linear DPS
For a non-linear DPS estimation case, consider the
following partial differential equation model.

2 P 2. pd 2,P3 (5.t
9 (x,t)+c46y GV IR G E)

oo ot P
p2 Pl
6 Y a(tx,t) +¢ ¥ aix’t) +co "0 (x,0) = u?S(x,1) (4-13)

To identify equation (4-13), the previous approach
algorithm will be applied to the equation. We can
integrate twice the equation (4-13) with respect to x and ¢,
and then we can get equation (4-14).

e, L[ 7 et e, [ [ G
e [P e e [ ][5 e
+e Io IO j;y"‘ (x, H)dtdxdx

e [T [y enydidiasates [ [ aoydideas— (4-14)

+f) [ poodaate+ [ [ [y yceaa

—a [} [ v ez —c, [ [ 7 (0. e

= [ [ e nyararasa

where

a(x)=—¢; [W]Ho -, y" (x,0) (4-15)
B(x) =—c, [?-y—p;%}o (4-16)
)= _CB[@”;S_J)} - ey (0,0) (4-17)

Determining the system parameters c,, ¢, ¢3, €3, €4 Cs
and the initial and boundary conditions is the estimation
problem for a non-linear distributed parameter system. Now
expanding the different functions into the Haar transform
and the two dimension Haar functions approximation
method yields,

(4-18)
(4-19)

yE(xty=H, (x)0,H,(f)
u” (x,0)=H, (x)R,H,(¢)

where Q. is a mn matrix given by equation (4-20)

Q-=zth column of (- ini_l('"))’mnm_l(") ' (4-20)

i=l

(i) mi2) -
where ,7‘("’) | and Y; is ith column

(m/2) (m/2)
0 n,

of matrix Y,

a0 =Sehm=Sen WhuH,e 2D

70,0 = Elih, = ’VJZ:;IiHmT(x)ﬂH, H( @22

a(x) = _kz_ioe,»H,n’(x)F,.H,1 H, (), (k<m) (4-23)

Bx)= fﬂiﬂm’(x>ﬁ+l,,f1n @, U<m) (4-24)
=

70 =3 1 H, @F,H, 0, (<n) (4-25)
par

Where Fj; is an matrix having the (ij)th element unity
and the remaining elements zero. Equation (4-18)-(4-25)
are substituted in equation (4-14). Thus we can get the
equation (4-26) as Haar transformed form.

es(B, VO +¢, B, QP+ OB +cy(P, V' O,P,

k-1
+e,P, OB +co(B Y OL + Y 0BV F,,P,
i=0

/-1 -1 o-1
+Y BPELBEY PV R, P+ g (B VE,,
i=0 i=0 i=0

v—l
+ D 1FRLB =B, Y RE} (4-26)
i=0

where g, =g .I" =],
Equation (4-26) can be written in the similar form of
equation (4-9).
KO=r (4-27)

Now, we can solve equation (4-27) as the same manner
of linear DPS in (4-12). Therefore the proposed method
yields an estimate for the both the coefficients of the
system and its initial and boundary conditions of a non-
linear DPS. Numerical examples are shown for supporting
the method. Clearly the present approach algorithm can
be applied to the case of higher-order partial differential
equation models.

V. NUMERICAL EXAMPLES

A. Example (1):
Consider the following linear DPS which is described
by the first-order partial differential equation.!"'!

[ DD | )
ot ox
u(x,0)=xt+4x+2t, y(x,t)=xt (5-2)

+c,¥(x,8) = u(x,t) (5-1)
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y(x,0) = y(0,) =0 (5-3)

From the exact solutions of equation (5-2) and (5-3),
we can get the output mean value Y i for y(x,#) and input

mean value Uy, for u(xt) using rectangular geometry

concept with respect to x and ¢. Where i=j=0, I, .., m-1
and m(n) denotes term of Haar transform. Choosing
m=n=4, Ax=At=025and i==0, 1, 2, 3. Thus Y,

and [y 4 are given by following table 5.1

Table 5.1. input and output mean values of example (1)

3 0.0068 0.0205 0.0342 0.0478
—<x<l1

4 0.1475 0.2236 0.2998 0.3760
1,3 | 00049 0.0146 0.0244 0.0342
2 4 0.1143 0.1885 0.2588 0.3311
1.1 0.0029 0.0088 0.0146 0.0205
4 2 0.0772 0.1494 0.2178 0.2881
o<r<t 0.0010 0.0029 0.0049 0.0068

- 0.0439 0.1123 0.1768 0.2432
by O$x<—] -]gx<-1 -lsx<§ 3 <x<1
dij 4 4 2 2 4 4

Now, to identify the system parameters, c;, ¢; and c;, we
can apply the proposed identification method. Convert the
equation (5-1) to an integral one as follows:

o [ yxnds+e, j: y(x,)dt
+e, I [ v ndvde= [ [utx,nyaxde — (5-4)

And then, expand the equation (5-4) by double Haar series
approximation and its operation matrix.

cleTYmn +cZYmnPn +cSP TY P = PmTUmnI:,n (5-5)

m mn- n

We can obtain the coefficient of Haar transform ¥
and U, from the given Yy and U i respectively.

U=1

m T
m

Voo = ~(H,T) Y, HT -7
m

(H,7)'U,HT (5-6)

Also, we know H, and P, as follows:

M1 1 1 1 ]
[ I T B B
S BV R/ R
L0 0 V2 -2
(11 2 2]
2 4 16 16
[N R | B
P4=} 16 16
V2 V2 0 0
16 16
292
16 16 i

According to equation (4-9) and (4-10), we can decide
matrix K, » and @ in equation (4-8) for solving the
problem.

Where K is the 4x4x(c, +c, +c¢,) matrix of known

elements, @ is the vector of unknowns and r is the
4x4 vector of known elements.

(B'Yp), (InP), (B'Y,P),

K=| : . (5-9)
T
(PZTYZZ )16 (YZZPZ )16 (PZ Y22P2)16
(PZTUZZPZ )1
T
0" =[c, ¢, ¢l ,_ : (5-10)
(B UnP,)
The results of K and r are given as equation (5-11)
0.0054  0.0054 0.0018 0.0338
« _|700039 —00027 00013 _|-o00198| (5-11)
0.0004 0.0004 0.0003 0.0025

Apply equation (4-12) to get square matrix and decideé

for [¢; ¢, c3]. Therefore we can identify the first-order
DPS’s parameters ¢;, ¢;and c; finally.

1.9585] [,
0=(K"K)'K'r={39155(=|c, (5-12)
12270] |c,

As shown in equation (5-12), ¢;=1.9585, c; =3.9155 and
¢5=1.2270 are obtained. The results agree precisely with
the exact values of ¢;=2, ¢;=4 and c;=1. If the term of
transform m(n) is increased, the results will be more
close to the exact values.

B. Example (2):

Following non-linear DPS is considered."” Given a
record of y(x,t)and u(x,¢), the problem is to estimate the
parameters of the system. For this purpose, ¢,=2, ¢;=2,
¢;=1 and m=r—4 are taken.

2
“ 8yf;cc,t) to 2 g 2 +e,y(x,1) = u(x,t) (5-13)
yx,0=y0,9=0, y(l,y=t (5-14)
And the input output functions are as follows:
u(x,) =4t +2t +xt, y(x,8) = xt (5-15)

To apply the proposed method, we integrate equation
(5-13) with respect to x and ¢ and expand the integrating
results using Haar transform. Then we can convert the
partial differential equation to the following algebraic
equation (5-15) simply
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o v ndcre, [y xndc+e, jojo y(x, t)doxdt

= J: .Lxu(x, t)dxdt (5-16)

And we can write the equation using the presented
method as follows:

Py, +c,Q,P, +c,P, Y P, =P U, P  (5-17)

Now, we can solve equation (5-17) as the same manner
of linear DPS in example (1). Therefore the proposed
method yields an estimate for the both the coefficient of
the system and its initial conditions of a non-linear DPS.
Using the procedure outlined above, we get the estimation
values of the parameters ¢,=2.0866, ¢,=2.0394, ¢;=0.9653.
The proposed method is very simple and accurate.

VI. CONCLUSIONS

Estimating the parameters, initial and boundary conditions
of non-linear distributed parameter system using Haar
functions and its transform has been presented in this
paper. The two dimension Haar functions approximation
method is introduced and applied newly to solve a partial
differential equation and a non-linear DPS problem.
Applying the proposed method, a partial differential equation
can be converted into an algebraic equation, and thus the
estimation of non-linear distributed parameter system
procedure is either greatly reduced or much simplified
accordingly.
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