• Title/Summary/Keyword: linear experimental system

Search Result 1,226, Processing Time 0.038 seconds

State Feedback Controller Design for Control Moment Gyroscope (Control Moment Gyroscope의 상태되먹임 제어기 설계)

  • Kim, Tae-Yeon;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.70-71
    • /
    • 2007
  • This paper presents an application of LQR(Linear Quadratic Regulator) for experimental control moment gyroscope. To be specific, mathematical model is first derived based on the quaternion and Lagrange's equation, state feedback controller using LQR scheme is designed, and to show the stability of the scheme, experimental results are given.

  • PDF

Development of Small Loading and Positioning Device using VCM (보이스 코일 모터를 이용한 미세 하중 및 위치 결정 기구의 개발)

  • 권기환;오승환;조남규;윤준용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.64-72
    • /
    • 2003
  • This paper presents a small loading and positioning device using VCM (voice coil motor). The developed device consists of a VCM-based linear actuating system, a capacitance displacement sensor and a cantilever deflection sensing system. The trust force of the VCM proportional to applied current moves the column supported on two pairs of parallel leaf springs. The infinitesimal displacement of moved column is detected by capacitance displacement sensor with a resolution of 0.1nm and a repeatability of 1nm. Also, a micro cantilever with known stiffness (200N/m), which is mounted on the end of the column, is used as a force sensor to detect the load applied to a specimen. After the cantilever contacts with the specimen, the deflection of cantilever and the load applied to the specimen are measured by using an optical lever system which consists of a diode laser, a mirror and a PSD (position sensitive detector). In this paper, an experimental system was constructed and its actuator and sensing parts were tested and calibrated. Also, the constructed system was applied to the indentation experiment and the load-displacement curve of aluminum was obtained. Experimental results showed that the developed device can be applied for performing nano indentation.

Microwave Signal Spectrum Broadening System Based on Time Compression

  • Kong, Menglong;Tan, Zhongwei;Niu, Hui;Li, Hongbo;Gao, Hongpei
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • We propose and experimentally demonstrate an all-optical radio frequency (RF) spectrum broadening system based on time compression. By utilizing the procedure of dispersion compensation values, the frequency domain is broadened by compressing the linear chirp optical pulse which has been multiplexed by the radio frequency. A detailed mathematical description elucidates that the time compression is a very preferred scheme for spectrum broadening. We also report experimental results to prove this method, magnification factor at 2.7, 8 and 11 have been tested with different dispersion values of fiber, the experimental results agree well with the theoretical results. The proposed system is flexible and the magnification factor is determined by the dispersion values, the proposed scheme is a linear system. In addition, the influence of key parameters, for instance optical bandwidth and the sideband suppression ratio (SSR), are discussed. Magnification factor 11 of the proposed system is demonstrated.

Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance (주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어)

  • Kim, Ki-Bum;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.

A Backstepping Control of LSM Drive Systems Using Adaptive Modified Recurrent Laguerre OPNNUO

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.598-609
    • /
    • 2016
  • The good control performance of permanent magnet linear synchronous motor (LSM) drive systems is difficult to achieve using linear controllers because of uncertainty effects, such as fictitious forces. A backstepping control system using adaptive modified recurrent Laguerre orthogonal polynomial neural network uncertainty observer (OPNNUO) is proposed to increase the robustness of LSM drive systems. First, a field-oriented mechanism is applied to formulate a dynamic equation for an LSM drive system. Second, a backstepping approach is proposed to control the motion of the LSM drive system. With the proposed backstepping control system, the mover position of the LSM drive achieves good transient control performance and robustness. As the LSM drive system is prone to nonlinear and time-varying uncertainties, an adaptive modified recurrent Laguerre OPNNUO is proposed to estimate lumped uncertainties and thereby enhance the robustness of the LSM drive system. The on-line parameter training methodology of the modified recurrent Laguerre OPNN is based on the Lyapunov stability theorem. Furthermore, two optimal learning rates of the modified recurrent Laguerre OPNN are derived to accelerate parameter convergence. Finally, the effectiveness of the proposed control system is verified by experimental results.

Experimental Identification of Rigid Body Properties by Direct System Identification Method (특성행렬 직접 규명법에 의한 강체특성의 실험적 추정)

  • Jeong, W.B.;Ryu, S.J.;Koe, D.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.22-29
    • /
    • 1995
  • An experimental method to identify the rigid properties (mass, moment of inertia, center of mass) of mounted structures is presented. A direct system identification method is developed and applied to identify the mass, damping and stiffness martix directly from the translational response of vibration testing. Conventional method is sensitive to noise since it needs artificial rotational response of temporary center of mass which is made by the linear transformation of translational response. A presented method needs only the translational response, and it is robuster to noise than conventional method. Several experimental and numerical implementations show the presented method is effective.

  • PDF

Position Control of Linear Actuator with Time Delay Using the Smith Predictor

  • Kang, Seung-Won;Park, Gi-sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.68.1-68
    • /
    • 2001
  • This paper discusses tracking position control of linear actuator that has a time delay. The time delay happens when the process reads the sensor data and sends the control input to the plant located at a remote site in distributed control system. In this thesis, the time delay between the linear actuator and the discrete PID controller has constant value due to buffer device so the time delay can be modeled by Pade approximation but the large position error of the linear actuator is generated by the time delay. Therefore, the Smith predictor is used for tracking position control of the linear actuator with the time delay in order to minimize the effect of the time delay. The experimental and simulation results show that the ...

  • PDF

Development of hybrid type linear motor and its driving system (Hybrid type linear motor의 개발과 구동)

  • Kim Moon-Hwan;Kim Soon-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.278-281
    • /
    • 2006
  • A Hybrid type LPM(Linear Pulse Motor) is designed as single side stator structure. Experimental results are shown that the static and dynamic characteristics. By the computer simulation, the permanent magnet design method is also clarified to desired thrust force. And microstep driver is adopted to the position controller to the designed LPM. The driver suppressed position errors within ${\pm}1501{\mu}m$.

  • PDF

Repetitive Control for the Track-Following Servo System of an Optical Disk Drive (광 디스크 드라이브의 트랙 추종 서보 시스템을 위한 반복 제어)

  • 문정호;이문노;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Disturbances acting on the track-following servo system of an optical disk drive inherently contain significant periodic components that cause tracking errors of a periodic nature. Such disturbances can be effectively rejected by employing a repetitive controller, which must be implemented carefully in consideration of system stability. Plant uncertainty makes it difficult to design a repetitive controller that will improve tracking performance yet preserve system stability. In this paper, we examine the problem of designing a repetitive controller for an optical disk drive track-following servo system with uncertain plant coefficients. We propose a graphical design technique based on the frequency domain analysis of linear interval systems. This design method results in a repetitive controller that will maintain system stability against all admissible plant uncertainties. We show simulation and experimental results to verify the validity of the proposed design method.

  • PDF

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, In-Soo;Kim, Yeung-Shik;Kim, Ki-Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.729-735
    • /
    • 2012
  • A LQG/LTR(linear quadratic Gaussian/loop transfer recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.