• Title/Summary/Keyword: linear equations

Search Result 2,501, Processing Time 0.029 seconds

ZEROS OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS WITH COEFFICIENTS OF SMALL LOWER GROWTH

  • Wang, Sheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.235-241
    • /
    • 2003
  • It is proved that the product of any two linearly independent meromorphic solutions of second order linear differential equations with coefficients of small lower growth must have infinite exponent of convergence of its zero-sequences, under some suitable conditions.

Superharmonic and subharmonic vibration resonances of rotating stiffened FGM truncated conical shells

  • Hamid Aris;Habib Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.545-562
    • /
    • 2023
  • In this work, superharmonic and subharmonic resonance of rotating stiffened FGM truncated conical shells exposed to harmonic excitation in a thermal environment is investigated. Utilizing classical shell theory considering Coriolis acceleration and the centrifugal force, the governing equations are extracted. Non-linear model is formulated employing the von Kármán non-linear relations. In this study, to model the stiffener effects the smeared stiffened technique is utilized. The non-linear partial differential equations are discretized into non-linear ordinary differential equations by applying Galerkin's method. The method of multiple scales is utilized to examine the non-linear superharmonic and subharmonic resonances behavior of the conical shells. In this regard, the effects of the rotating speed of the shell on the frequency response plot are investigated. Also, the effects of different semi-vertex angles, force amplitude, volume-fraction index, and temperature variations on the frequency-response graph are examined for different rotating speeds of the stiffened FGM truncated conical shells.

AN ACCELERATING SCHEME OF CONVERGENCE TO SOLVE FUZZY NON-LINEAR EQUATIONS

  • Jun, Younbae
    • The Pure and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose an accelerating scheme of convergence of numerical solutions of fuzzy non-linear equations. Numerical experiments show that the new method has significant acceleration of convergence of solutions of fuzzy non-linear equation. Three-dimensional graphical representation of fuzzy solutions is also provided as a reference of visual convergence of the solution sequence.

A Study on the Vibration Characteristics of Linear Stepping Motor using FEM and ACSL (유한요소법과 ACSL을 이용한 Linear Stepping Motor의 진동특성에 관한 연구)

  • Lee, Sang-Ho;Kim, Jung-Ki;Oh, Hong-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.141-147
    • /
    • 2003
  • In this paper, the vibration characteristics of a linear stepping motor(LSM) are analyzed using the finite element method(FEM : Flux2D) and ACSL. A magnetic equivalent circuit is based on the structure of the LSM, and then the electric equivalent circuit of the LSM is derived by solving equations for the magnetic equivalent circuit. A normal force is calculated using FEM. And the vibration characteristics of the LSM are simulated by the ACSL with the voltage equations, the thrust equations, the normal force equations and the kinetic equations, and are measured by LASER experimental system.

  • PDF

GENERALIZATION OF A FIRST ORDER NON-LINEAR COMPLEX ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV SPACE

  • MAMOURIAN, A.;TAGHIZADEH, N.
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • In this paper we discuss on the existence of general solution of Partial Differential Equations $\frac{{\partial}w}{{\partial}\bar{z}}=F(z,\;w,\;\frac{{\partial}w}{{\partial}z})+G(z,\;w,\;\bar{w})$ in the Sololev Space $W_{1,p}(D)$, that is generalization of a first order Non-linear Elliptic System of Partial Differential Equations $\frac{{\partial}w}{{\partial}\bar{z}}=F(z,\;w,\;\frac{{\partial}w}{{\partial}z}).$

  • PDF

NUMERICAL SOLUTION OF ABEL'S GENERAL FUZZY LINEAR INTEGRAL EQUATIONS BY FRACTIONAL CALCULUS METHOD

  • Kumar, Himanshu
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.527-545
    • /
    • 2021
  • The aim of this article is to give a numerical method for solving Abel's general fuzzy linear integral equations with arbitrary kernel. The method is based on approximations of fractional integrals and Caputo derivatives. The convergence analysis for the proposed method is also given and the applicability of the proposed method is illustrated by solving some numerical examples. The results show the utility and the greater potential of the fractional calculus method to solve fuzzy integral equations.

Intelligent Parallel Iterative Methods for Solving Linear Systems of Equations with Large Sparse Matrices (대형 스파스 행렬로 표현되는 선형시스템 방정식의 해를 구하기 위한 지능적 병렬 반복법)

  • Chae, Soo-Hoan;Kim, Myung-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.62-67
    • /
    • 2009
  • The demand for high performance computer grows to solve large linear systems of equations in such engineering fields - circuit simulation for VLSI design, image processing, structural engineering, aerodynamics, etc. Many various parallel processing systems have been proposed and manufactured to satisfy the demand. The properties of linear system determine what algorithm is proper to solve the problem. Direct methods or iterative methods can be used for solving the problem. In this paper, an intelligent parallel iterative method for solving linear systems of equations with large sparse matrices is proposed and its efficiency is proved through simulation.

  • PDF

Dynamic Stability of an Elastically Restrained Cantilevered Pipe (탄성지지된 외팔 송수관의 동적안정성)

  • 정승호;류봉조;송오섭;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.202-206
    • /
    • 2001
  • The paper presents the dynamic stability of a vertical cantilevered pipe conveying fluid and having an intermediate translational linear spring. The translational linear spring can be located at an arbitrary position. Governing equations are derived by energy expressions, and numerical technique using Galerkin's method is applied to discretize the equations of small motion of the pipe. Effects of linear spring supports on the dynamic stability of a vertical cantilevered pipe conveying fluid are fully investigated for various locations and magnitudes of the translational linear spring.

  • PDF

GROWTH OF SOLUTIONS OF NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

  • Pramanik, Dilip Chandra;Biswas, Manab
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • In this paper, we investigate the growth properties of solutions of the non-homogeneous linear complex differential equation L(f) = b (z) f + c (z), where L(f) is a linear differential polynomial and b (z), c (z) are entire functions and give some of its applications on sharing value problems.