• Title/Summary/Keyword: linear elastic analysis

Search Result 760, Processing Time 0.03 seconds

The Prediction of Void Ratio in Unsaturated Soils (불포화토에서 공극비의 추정)

  • Lee Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.51-57
    • /
    • 2006
  • This study was carried out to investigate the soil water characteristic curve and prediction of void ratio with net stress and matric suction using the linear elastic and volumetric deformation analysis method on unsaturated silty. The unsaturated soil tests were conducted using a modified oedometer cell and specimens were prepared at water content 2 times of liquid limit and required void ratio. The axis translation technique was used to create the desired matric suctions in the samples. It is shown that soil water characteristic curve and volumetric water content were affected significantly by preconsolidation pressure. As a matric suction increases, the reduction ratio of void ratio was shown to considerably small. Also, the predicted and measured void ratio for unsaturated soils using the linear elastic and volumetric deformation analysis showed good agreement as net stress and matric suction increases.

Thermoelastic Finite Element Analysis of Multiple horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.50-58
    • /
    • 2000
  • A linear elastic fracture mechanics analysis of multiful subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was peformed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

  • PDF

Seismic analysis of tunnel considering the strain-dependent shear modulus and damping ratio of a Jointed rock mass (절리암반의 변형률 의존적 전단탄성계수 및 감쇠비 특성을 고려한 터널의 내진 해석)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun;Lee, Jeong-Hark
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.295-306
    • /
    • 2010
  • Contrary to an intact rock, the jointed rock mass shows strain-dependent deformation characteristics (elastic modulus and damping ratio). The maximum elastic modulus of a rock mass can be obtained from an elastic wave-based exploration in a small strain level and applied to seismic analyses. However, the assessment and application of the non-linear characteristics of rock masses in a small to medium strain level ($10^{-4}{\sim}0.5%$) have not been carried out yet. A non-linear dynamic analysis module is newly developed for FLAC3D to simulate strain-dependent shear modulus degradation and damping ratio amplification characteristics. The developed module is verified by analyzing the change of the Ricker wave propagation. Strain-dependent non-linear characteristics are obtained from disks of cored samples using a rock mass dynamic testing apparatus which can evaluate wave propagation characteristics in a jointed rock column. Using the experimental results and the developed non-linear dynamic module, seismic analyses are performed for the intersection of a shaft and an inclined tunnel. The numerical results show that vertical and horizontal displacements of non-linear analyses are larger than those of linear analyses. Also, non-linear analyses induce bigger bending compressive stresses acting on the lining. The bending compressive stress concentrates at the intersection part. The fundamental understanding of a strain-dependent jointed rock mass behavior is achieved in this study and the analytical procedure suggested can be effectively applied to field designs and analyses.

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Static and dynamic analysis of cable-suspended concrete beams

  • Kumar, Pankaj;Ganguli, Abhijit;Benipal, Gurmail
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.611-620
    • /
    • 2017
  • A new theory of weightless sagging planer elasto-flexible cables under point loads is developed earlier by the authors and used for predicting the nonlinear dynamic response of cable-suspended linear elastic beams. However, this theory is not valid for nonlinear elastic cracked concrete beams possessing different positive and negative flexural rigidity. In the present paper, the flexural response of simply supported cracked concrete beams suspended from cables by two hangers is presented. Following a procedure established earlier, rate-type constitutive equations and third order nonlinear differential equations of motion for the structures undergoing small elastic displacements are derived. Upon general quasi-static loading, negative nodal forces, moments and support reactions may be introduced in the cable-suspended concrete beams and linear modal frequencies may abruptly change. Subharmonic resonances are predicted under harmonic loading. Uncoupling of the nodal response is proposed as a more general criterion of crossover phenomenon. Significance of the bilinearity ratio of the concrete beam and elasto-configurational displacements of the cable for the structural response is brought out. The relevance of the proposed theory for the analysis and the design of the cable-suspended bridges is critically evaluated.

Multibody Elastic Contact Analysis by Modified Linear Programming (수정된 선형계획법을 이용한 다물체 탄성 접촉 문제 해석)

  • 이대희;전범준;최동훈;임장근;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • A general and efficient algorithm is proposed for the analyses of multibody elastic contact problems. It is presumed that there exists negligible friction between the bodies. It utilizes a simplex type algorithm with a modified entry rule and incoporates finite element method to obtain flexibility matrices for arbitrarily shaped bodies. The multibody contact problem of a vehicle support on an elastic foundation is considered first to show the effictiveness of the suggested algorithm. Its solution is compared favorably with the existing solution. A contact problem among inner race, rollers and outer race is analyzed and the distribution of load, rigid body movements and contact pressure distributions are obtained. The trend of contact characteristics is compared with that of the idealized Hertzian solutions for two separate two-body contact problems. The numerical results obtained by directly treating a multibody contact are believed to be more exact than the Hertzian solution for the idealized two separate two-body contact problems.

Static Non-linear Finite Element Analysis of Spatial Cable Networks (3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석)

  • 김문영;김남일;안상섭
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.179-190
    • /
    • 1998
  • A geometrically nonlinear finite element formulation of spatial cable networks is presented using two cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static nonlinear behaviors of cable nets.

  • PDF

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I))

  • Kang Ji-Woong;Kim Sang-Tae;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.403-432
    • /
    • 2019
  • Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

A Study on the Calculation of Stiffness Properties for Composite Box-Beams with Elastic Couplings (구조연성을 고려한 복합재료 상자형 보의 강성계수 예측에 관한 연구)

  • 정성남;동경민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.147-150
    • /
    • 2001
  • In the present work, a linear static analysis is presented for thin-walled prismatic box-beams made of generally anisotropic materials. A mixed beam theory has been used to model and carry out the analysis. Three different constitutive relations are assessed into the beam formulation. Simple layup cases having symmetric or anti-symmetric configuration have been chosen and tested to clearly show the effects of elastic couplings of the beam. Both 2D and 3D finite element structural analysis using the MSC/NASTRAN has been performed to validate the current analytical results. Results show that appropriate assumptions for the constitutive equations are important and prerequisite for the accurate prediction of beam stiffness constants and also for the beam behavior.

  • PDF