• Title/Summary/Keyword: linear dynamic systems

Search Result 796, Processing Time 0.026 seconds

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.

Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

  • Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

Extended State Estimation Method Using Linear Reduced-Order Dynamic Observers (선형 축소차수 동적 관측자를 사용한 확장된 상태 추정 방법)

  • Park, Jong-Gu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.487-493
    • /
    • 2001
  • In this paper, a new reduced-order dynamic observer method is presented. Two types of observers are pronounced, namely, the model based reduced-order dynamic observer and the Luenburger type reduced-order dynamic observer. Useful design algorithms are also provided for each structure. The essential features of the proposed observed design methods are addressed to be qualified ad effective observers. The proposed method clarifies the duality between the controller and observer designs.

  • PDF

Decentralized Dynamic Output Feedback Controller for Discrete-time Nonlinear Interconnected Systems via T-S Fuzzy Models (이산 시간 비선형 상호 결합 시스템의 T-S 퍼지 모델을 위한 분산 동적 출력 궤한 제어기 설계)

  • Koo, Geun-Bum;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.780-785
    • /
    • 2007
  • This paper proposes the decentralized dynamic output feedback controller for discrete-time nonlinear interconnected systems using Takagi-Sugeno (T-S) fuzzy model. Through T-S fuzzy model of each subsystem, the decentralized dynamic output feedback controller is designed. By the closed-loop subsystems with controller, it represents the linear matrix inequality (LMI) for stability of whole interconnected system. The value of control gain are obtained by LMI. An example is given to show the experimentally verification discussed throughout the paper.

Dynamic Analysis of Wheel-Rail High Speed Train Propelled by Superconducting Linear Synchronous Motor (초전도 선형동기전동기 추진 휠-레일 고속열차의 동특성 분석)

  • Lee, Jin-Ho;Lee, Chang-Young;Jo, Jeong-Min;Han, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.119-125
    • /
    • 2016
  • This study examined the running dynamic characteristics of a hybrid type wheel-rail high speed train, in which the propulsion method of maglev is applied. A wheel-rail high speed train propelled by a superconducting linear synchronous motor (SC-LSM) is expected to be superior to a maglev train regarding economical and interoperable aspects, still having powerful thrust force as maglev. In this paper, regarding the two methods of applying the SC-LSM to an existing wheel-rail train, to investigate the influences of SC-LSM propulsion on the dynamic characteristics of wheel-rail high speed train, the dynamic model of train including interaction between the rotor and stator of SC-LSM is established. Through the simulation using the model, the influence of the interaction between the rotor and stator of SC-LSM on stability, ride comfort and the effect of guideway irregularity are investigated.

Effects of Material Parameters and Process Conditions on the Roll-Drafting Dynamics

  • Huh, You;Kim, Jong-S.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.424-431
    • /
    • 2006
  • Roll drafting, a mechanical operation attenuating fiber bundles to an appropriate thickness, is an important operation unit for manufacturing staple yams. It influences not only the linear density regularity of the slivers or staple yams that are produced, but also the quality of the textile product and the efficiency of the thereafter processes. In this research, the dynamic states of the fiber bundle in the roll drafting zone were analyzed by simulation, based on the mathematical model that describes the dynamic behavior of the flowing bundle. The state variables are the linear density and velocity of the fiber bundles and we simulated the dynamics states of the bundle flow, e.g., the profiles of the linear density and velocity in the draft zone for various values of the model parameters and boundary conditions, including the initial conditions to obtain their influence on the dynamic state. Results showed that the mean velocity profile of the fiber bundle was strongly influenced by draft ratio and process speed, while the input sliver linear density has hardly affected the process dynamics. Velocity variance of individual fibers that could be supposed to be a disturbing factor in drafting was also influenced by the process speed. But the major disturbance occurred due to the velocity slope discontinuity at the front roll, which was strongly influenced by the process speed. Thickness of input sliver didn't play any important role in the process dynamics.

State feedback controller design for linear multivariable systems with delays (다변수 시간지연 시스템의 상태궤환 제어기 설계)

  • 홍석민;황승구;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1040-1044
    • /
    • 1992
  • This paper presents an algebraic approach for finding a dynamic state feedback controller when the linear multi-input system with delays in both state and input is controllable. In the time-delay case, controllability of the system does not always imply that system is cyclizable. Therefore, reduced order augmentation systems which is cyclizable as the time-varying case are considered. It is possible to construct feedback contorl systems by using single-input methods.

  • PDF

Reliable Control for Linear Dynamic Systems with Time-varying Delays and Randomly Occurring Disturbances (시변지연 및 임의 발생 외란이 존재하는 선형 동적 시스템의 신뢰성 제어)

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.976-986
    • /
    • 2014
  • In this paper, the problem of reliable control of linear systems with time-varying delays, randomly occurring disturbances, and actuator failures is investigated. It is assumed that actuator failures occur when disturbances affect to the systems. Firstly, by using a suitable Lyapunov-Krasovskii functional and some recent techniques such as Wirtinger-based integral inequality and reciprocally convex approach, stabilization criterion for nominal systems with time-varying delays is derived. Secondly, the proposed method is extended to the reliable $H_{\infty}$ controller design for linear dynamic systems with time-varying delays, randomly occurring disturbances, and actuator failures. Since nonlinear matrix inequalities (NLMIs) are involved in proposed results, the cone complementarity algorithm will be introduced. Finally, two numerical examples are included to show the effectiveness of the proposed criteria.

Eigenstructure Assignment Control for Linear Continuous-Time Systems with Probabilistic Uncertainties (확률적 불확실성을 갖는 선형 연속 시간 시스템의 고유구조 지정제어)

  • 서영봉;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.145-152
    • /
    • 2004
  • In this paper, an S(stochastic)-eigenvalue and its corresponding S-eigenvector concept for linear continuous-time systems with probabilistic uncertainties are proposed. The proposed concept is concerned with the perturbation of eigenvalues due to the stochastic variable parameters in the dynamic model of a plant. An S-eigenstructure assignment scheme via the Sylvester equation approach based on the S-eigenvalue/-eigenvector concept is also proposed. The proposed control design scheme based on the proposed concept is applied to a longitudinal dynamics of an open-loop-unstable aircraft with possible uncertainties in aerodynamic and thrust effects as well as separate dynamic pressure effects. These results explicitly characterize how S-eigenvalues in the complex plane may impose stability on the system.

Delay-dependent v Filter Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 H 필터 설계)

  • Lee, Kap-Rai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.618-624
    • /
    • 2004
  • This paper presents a delay dependent fuzzy H_\infty$ filter design method for delayed fuzzy dynamic systems. Using delay-dependent Lyapunov function, the global exponential stability and H_\infty$ performance problem are discussed. A sufficient condition for the existence of fuzzy filter is presented in terms of linear matrix inequalities(LMIs). The filter design utilize the concept of parallel distributed compensation. And the filter gains can also be directly obtained from the LMI solutions. A simulation example is given to illustrate the design procedures and performance of the proposed methods.