• Title/Summary/Keyword: linear combination approach

Search Result 131, Processing Time 0.024 seconds

Practical Schemes for Tunable Secure Network Coding

  • Liu, Guangjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1193-1209
    • /
    • 2015
  • Network coding is promising to maximize network throughput and improve the resilience to random network failures in various networking systems. In this paper, the problem of providing efficient confidentiality for practical network coding system against a global eavesdropper (with full eavesdropping capabilities to the network) is considered. By exploiting a novel combination between the construction technique of systematic Maximum Distance Separable (MDS) erasure coding and traditional cryptographic approach, two efficient schemes are proposed that can achieve the maximum possible rate and minimum encryption overhead respectively on top of any communication network or underlying linear network code. Every generation is first subjected to an encoding by a particular matrix generated by two (or three) Vandermonde matrices, and then parts of coded vectors (or secret symbols) are encrypted before transmitting. The proposed schemes are characterized by tunable and measurable degrees of security and also shown to be of low overhead in computation and bandwidth.

Dynamic Analysis of Aircraft Landing Gear under Nonstationary Random Excitations (비정상 랜덤 가진력을 받는 항공기 착륙장치의 동특성 해석)

  • 황재혁;유병성;박명호
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.251-259
    • /
    • 1998
  • The motion of an aircraft landing gear over rough runway at variable speed is nonstationary. In this paper, a method for the computation of nonstationary response variance is presented which uses a state space form for the combination of landing gear and runway excitation. The dynamic characteristics of the landing gear under nonstationary random excitations has also been analyzed using the proposed method. The formulation is for linear systems of arbitrary order and allows any deterministic velocity history. It has been found by a series of simulation that correlation parameter, damping coefficients of landing gear and tire, and velocity profiles play a prominent role on the dynamic characteristics.

  • PDF

A Process Fault Detection Filter Design by Fault Vector Modelling Approach and an Application (고장벡터 모델링에 위한 프로세스 고장 검출필터의 설계 및 응용)

  • 이기상;배상욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.430-436
    • /
    • 1987
  • A Detection filter that can be used for the Detection and Isolation of process faults is proposed by the use of fault vector modelling, and is applied to DC Motor fault detection. The proposed detection filter is a new one in a view point that its outputs are the estimates of fault variables(or linear combination of them) while all the existing filters estimate the state of process. By this properties, the process fault detection systems with this filter can be constructed in very simple structure. Besides the simplicity of structure and design procedure, the filter has an useful feature that various types of fault can be estimated via the filter by choosing appropriate fault models.

  • PDF

Buckling Behavior of Seismic Isolation Bearings (면진 고무베어링의 좌굴거동)

  • 이종세;오종원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.187-194
    • /
    • 1999
  • Laminated rubber bearings are widely used as a key component in seismic isolation of structural systems subjected to earthquake loadings. The combination of rubber layers and reinforcing steel shims makes the bearings conditionally unstable similar to buckling of ordinary columns. The shear flexibility of these short columns can lead to relatively low buckling Toads which may be further reduced when high shear strains are simultaneously imposed As an analytical approach, the area reduction formula has been proposed to account for the reduction in buckling load due to shear, but the degree of conservatism is unknown. In order to complement analytical approaches, a non-linear finite element analysis can be used. In this paper, a numerical study which aims at determining the effect of high shear strain on the critical load of elastomeric bearings is presented. From the load-displacement curve at each specified shear displacement, the buckling load can be obtained using the Southwell procedures. The results obtained are then compared against the theoretical predictions in order to examine the validity and the conservatism of the theoretical formulas.

  • PDF

A Study on Combination of Various Numerical Analysis Methods (이종해법의 병용에 관한 연구)

  • Im, Jee-Won;Choo, Dong-Woog;Han, Seok-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.99-103
    • /
    • 2000
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

An Optimization of Air-Lubricated Slider Bearings Using the Reduced Basis Concept (축소기초모델개념을 이용한 공기윤활 슬라이더 베어링의 최적설계)

  • Yoon, Sang-Joon;Kim, Dong-In;Kang, Tae-Sik;Jeong, Tae-Gun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.343-348
    • /
    • 2003
  • In this study, optimum designs of the air-bearing surface (ABS) are achieved using the reduced basis concept which can effectively reduce the number of design variables without cutting down on the design space. Even though the optimization method is easier and more applicable to handle than the trial-and-error method, its efficiency is largely dependent on the number of the design variables. Hence, the reduced basis concept is applied, by which the desired design can be defined as a linear combination of basis designs. The simulation results show the effectiveness of the proposed approach by obtaining the optimum solutions of the sliders whose target flying heights are 25, 20, and 15nm.

Hydrodynamic Interaction Characteristics between Multiple Floating Bodies of Semisubmersible Type in Waves (반잠수식 부체군의 상호간섭특성)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.93-103
    • /
    • 1992
  • The hydrodynamic interaction characteristics between multiple floating bodies of semisubmersible type are examined for presenting the basic data for the design of huge offshore structures supported by a large number of the floating bodies in waves. The numerical approach is based on combination of a three-dimensional source distribution method and interaction theory which is exact within the context of linear potential theory. The method is applicable to an arbitrary number of three-dimensional bodies having any individual body geometries and geometrical arrangement with the restriction that the circumscribed, bottom-mounted, imaginary vertical cylinder for each body does not contain any part of the other body. The validity of this procedure was verified by comparing with numerical results obtained in the literature.

  • PDF

Smoke Detection System Research using Fully Connected Method based on Adaboost

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.79-82
    • /
    • 2017
  • Smoke and fire have different shapes and colours. This article suggests a fully connected system which is used two features using Adaboost algorithm for constructing a strong classifier as linear combination. We calculate the local histogram feature by gradient and bin, local binary pattern value, and projection vectors for each cell. According to the histogram magnitude, this paper applied adapted weighting value to improve the recognition rate. To preserve the local region and shape feature which has edge intensity, this paper processed the normalization sequence. For the extracted features, this paper Adaboost algorithm which makes strong classification to classify the objects. Our smoke detection system based on the proposed approach leads to higher detection accuracy than other system.

A Clarification of the Cauchy Distribution

  • Lee, Hwi-Young;Park, Hyoung-Jin;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2014
  • We define a multivariate Cauchy distribution using a probability density function; subsequently, a Ferguson's definition of a multivariate Cauchy distribution can be viewed as a characterization theorem using the characteristic function approach. To clarify this characterization theorem, we construct two dependent Cauchy random variables, but their sum is not Cauchy distributed. In doing so the proofs depend on the characteristic function, but we use the cumulative distribution function to obtain the exact density of their sum. The derivation methods are relatively straightforward and appropriate for graduate level statistics theory courses.

Inverse Heat Conduction Problem in One-Dimensional Time-Dependent Medium with Modified Newton-Raphson Method

  • Kim, Sin;Lee, Yoon-Joon;Lee, Jung-hoon;Kim, Min-Chan
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.37-40
    • /
    • 2000
  • An inverse problem is solved to determine the space-dependent thermal conductivity in one-dimensinoal time-dependent heat conduction medium with the data imposed and measured at the two end-points. The thermal conductivity is approximated as a linear combination of known functions with unknown coefficients and the unknowns are obtained by the governing and sensitivity equations using modified Newton-Raphson method. The estimated results are compared with exact thermal conductivities and it shows good agreements. This approach is expected to be used to estimate spatial composition of heat conduction medium.

  • PDF