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Abstract
We define a multivariate Cauchy distribution using a probability density function; subsequently, a Ferguson’s

definition of a multivariate Cauchy distribution can be viewed as a characterization theorem using the character-
istic function approach. To clarify this characterization theorem, we construct two dependent Cauchy random
variables, but their sum is not Cauchy distributed. In doing so the proofs depend on the characteristic function,
but we use the cumulative distribution function to obtain the exact density of their sum. The derivation methods
are relatively straightforward and appropriate for graduate level statistics theory courses.
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tion function.

1. Introduction

The Cauchy distribution is an example of a distribution which has no mean, variance or higher mo-
ments defined. Hence it has no moment generating function (mgf). The sample mean will have the
same standard Cauchy distribution if X1, . . . , Xn are independent and identically distributed random
variables with a standard Cauchy distribution. This example serves to show that the hypothesis of
finite variance in the central limit theorem cannot be dropped. For the applications of the multivariate
Cauchy distribution, see Kotz and Nadarajah (2004) and Crovella et al. (1998). Recently Park and
Bera (2009) well summarized the maximum entropy probability distributions. Specifically the stan-
dard Cauchy distribution is the maximum entropy probability distribution for a random variable X
for which E(ln(1 + X2)) = ln(4). Zhang (2010) proposed a new unbiased L-estimator based on order
statistics. Originally, Ferguson (1962) defined a multivariate Cauchy distribution as follows:

“A random vector X is said to have a multivariate Cauchy distribution if, and only if, for every real
vector b, the random variable b⊤X has a Cauchy distribution. The distribution is said to be symmetric
if the mass is distributed symmetrically with respect to some point in p-dimensional space.”

In addition, characteristic function (cf) and the cumulative distribution function (cdf) approaches
for the Cauchy distribution are also possible. Presumably, the easiest approach is using the probability
density function (pdf) which is commonly adopted in modern mathematical statistics because the
multivariate Cauchy density is equal to that of the multivariate t distribution when the degrees of
freedom is one.

Thus, a multivariate Cauchy distribution is defined as follows (Kotz and Nadarajah, 2004). Sup-
pose a p-dimensional random vector X = (X1, . . . , Xp)⊤ follows a multivariate Cauchy distribution,
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that is, X ∼ Cauchyp(µ,Σ); then, its density function is given by

fX(x; µ,Σ) =
Γ
(

1+p
2

)
Γ
(

1
2

)
π

p
2 |Σ| 12 [

1 + (x − µ)⊤Σ−1(x − µ)
] 1+p

2

, x ∈ Rp, (1.1)

where µ ∈ Rp is a location vector and Σ is a positive-definite scale matrix. When p = 1, its density
function is

fX

(
x; µ, σ2

)
=

1
π

[
σ

(x − µ)2 + σ2

]
, x ∈ R. (1.2)

Furthermore, the special case when µ = 0 and σ = 1 is called the standard Cauchy distribution.
The characteristic function (Kotz and Nadarajah, 2004) of (1.1) is obtained as follows:

ΨX(t) = exp
(
it⊤µ −

∣∣∣∣∣∣∣∣Σ 1
2 t

∣∣∣∣∣∣∣∣) , ∀ t ∈ Rp, (1.3)

where ∥ t ∥=
√

t⊤t and i =
√
−1. Therefore the cf of (1.2) is ΨX(t) = exp(iµt − σ|t|), ∀ t ∈ R.

We first argue that Ferguson’s definition of a multivariate Cauchy distribution can be viewed as
a characterization theorem using a characteristic function approach as in the case of the multivariate
normal distribution. Ferguson’s definition of a multivariate Cauchy distribution may give a wrong
impression. Every component of a random vector is Cauchy since each component can be expressed
as a linear combination; therefore, the sum of every component is itself Cauchy. This fact may give an
illusion that a sum of Cauchy random variables should be Cauchy such as in the case of independent
Cauchy random variables. Similarly, this argument can be applied to the normal distribution. Even
for the normal distribution, this is a problem as in Melnick and Tenenbein (1982).

However, we could not find any clear example of it: as far as we know, examples are abundant
in the multivariate normal case (Romano and Siegel, 1986; Novosyolov, 2006, among others). Even
though for the normal case, many students in statistics courses obtain a mistaken impression con-
cerning the property of the normal distribution. Therefore the goal of this paper is to present an
informative and intriguing example, where the sum of two marginal univariate Cauchy random vari-
ables is not Cauchy for clarifying a mistaken impression about the Cauchy distribution. In doing so,
some derivation methods are relatively straightforward using the cf and cdf of the Cauchy distribution.
Hence this material is appropriate for graduate level statistics theory courses.

The rest of this paper is organized as follows. Section 2 describes the problem setup to construct
random variables that are marginally univariate Cauchy distributed, but whose sum is not Cauchy
distributed. In Section 3, we show that the random variables given in Section 2 fulfill our assertion.
Furthermore some interesting results are mentioned as remarks. Finally concluding remarks are given
in Section 4.

2. Problem Setup

Suppose that a p-dimensional random vector X = (X1, . . . , Xp)⊤ follows a multivariate Cauchy dis-
tribution, that is, X ∼ Cauchyp(µ,Σ); then, its density function is given by (1.1). We characterize a
multivariate Cauchy random vector X using every linear combination of the components of X in the
following theorem which is usually done in the case of the multivariate normal distribution. The proof
depend on the cf since there is no mgf for Cauchy distribution.
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Theorem 1. (Characterization) X ∼ Cauchyp(µ,Σ) if and only if a⊤X ∼ Cauchy(a⊤µ, a⊤Σa),
∀a , 0 ∈ Rp.

Proof: Suppose that X ∼ Cauchyp(µ,Σ), then its cf is given by (1.3). Thus the cf of a⊤X is Ψa⊤X(t) =
ΨX(at) = exp(ita⊤µ −

√
a⊤Σa|t|). For the other part, observe that if a⊤X ∼ Cauchy(a⊤µ, a⊤Σa), ∀a ,

0 ∈ Rp, then we have Ψa⊤X(t) = exp(ita⊤µ −
√

a⊤Σa|t|), ∀t ∈ R. Now given that Ψa⊤X(t) = ΨX(at),
taking t = 1 and comparing with ΨX(t) in (1.3), we have X ∼ Cauchyp(µ,Σ) since a is arbitrary. �

This is well-known in the case of the normal distribution, but we were unable to find any direct
proof that uses the cf of the Cauchy distribution. To clarify this characterization theorem, we start
with two simple examples to show that the sum of two marginal univariate Cauchy random variables
is not Cauchy. Let X be a univariate standard Cauchy random variable. Then −X is also a univariate
standard Cauchy random variable but X − X = 0. This is a simple example to roughly illustrate that
linear combinations of Cauchy random variables need not be Cauchy distribution if the degenerate
distribution is not included in the Cauchy distribution. To be more general, let X ∼ Cauchy(µ, σ2),
then Y = 2µ−X ∼ Cauchy(µ, σ2) and X +Y = X + 2µ−X = 2µ is not Cauchy distributed by the same
reason as above.

However these examples are not so informative since the degenerate distribution should not be
included in the Cauchy distribution. An example about the normal distribution from Romano and
Siegel (1986) can be extended to the Cauchy distribution. Let X ∼ Cauchy(0, 1). Observe X; then toss
a fair coin and define Y as follows:

Y =
{

X, if the toss is “heads”,
−X, if the toss is “tails”.

By symmetry of X about 0, Y ∼ Cauchy(0, 1). However the sum X + Y is a mixture of a discrete
and a continuous distribution, so it cannot have a Cauchy distribution. This is not degenerate because
it is continuously distributed whenever the toss is heads, but too tricky. Therefore we develop an
informative and intriguing example to clarify a mistaken impression about Cauchy distribution.

Now we construct random variables such that X1 and X2 are univariate Cauchy, but their sum,
X1 + X2, is not a Cauchy random variable. Suppose that X1 and Z are independent univariate standard
Cauchy random variables. This means that the joint distribution of X1 and Z is standard bivariate
Cauchy. Consider a new random variable X2 such that

X2 =

{
|Z|, X1 ≥ 0,
−|Z|, X1 < 0. (2.1)

Then, the random variable X2 has a standard univariate Cauchy distribution, but the joint distribution
of (X1, X2) is not bivariate Cauchy. The latter can be shown using the definition of X2. Since X1
and X2 always have the same sign by construction, they cannot be bivariate Cauchy. Moreover the
distribution of X1 + X2 is not Cauchy.

In the following section we will prove the following two statements:

• The random variable X2 is distributed as a Cauchy distribution.

• The distribution of X1 + X2 is not a Cauchy distribution.
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3. Completing the Example

3.1. X2 is Cauchy

We show that the random variable X2 defined by (2.1) has the same distribution, that of the standard
Cauchy random variable Z.

Theorem 2. The cf of X2 defined by (2.1) is equal to that of Z.

Proof: DenoteΨ|Z|(t) = a(t)+ib(t) as the cf of |Z|, where a(t) = E cos(t|Z|) and b(t) = E sin(t|Z|). Then
the cf of Z becomes ΨZ(t) = a(t) since the property of trigonometric functions. Furthermore, ΨX2 (t) =
EX2 (eitX2 ) = EX1 [EX2 (eitX2 |X1)], which becomes Ψ|Z|(t)/2 + Ψ|Z|(−t)/2 by the construction (2.1). The
result follows using the property of cf and a(t) and b(t) are even and odd functions, respectively. �

3.2. X1 + X2 is not Cauchy

We show that the random variable X1 + X2, where X2 defined by (2.1), is not Cauchy distributed using
the cf of it.

Theorem 3. The cf of X1 + X2, where X2 defined by (2.1), can’t be the form of cf in Cauchy.

Proof: Denote Ψ|Z|(t) = a(t) + ib(t) as the cf of |Z|, where a(t) = E cos(t|Z|) and b(t) = E sin(t|Z|).
Then the cf of X1 becomes ΨX1 (t) = a(t) since the property of trigonometric functions, E[eitX1 I(X1 ≥
0)] = Ψ|Z|(t)/2 and E[eitX1 I(X1 < 0)] = Ψ|Z|(−t)/2. Note that

ΨX1+X2 (t) = E
[
eit(X1+X2)

]
= EX1

[
EX2

(
eit(X1+X2)

∣∣∣∣X1

)]
= Ψ|Z|(t)EX1

[
eitX1 I(X1 ≥ 0)

]
+ Ψ|Z|(−t)EX1

[
eitX1 I(X1 < 0)

]
= a(t)2 − b(t)2,

which cannot be the form of cf in Cauchy. �

We showed that the random variable X1 + X2 is not Cauchy distributed using the cf of it, but we
still do not know the exact pdf of it. We employ the cdf approach to resolve this; consequently, some
informative results appear and become useful presentation materials for graduate level statistics theory
courses.

Define υ(x) as the pdf of the univariate standard Cauchy distribution given by (1.2) with µ = 0 and
σ = 1 and define Υ(x) as its cdf; that is, Υ(x) = P(X ≤ x) = (1/π) arctan(x)+1/2, x ∈ R. Furthermore
g(x, y) denotes the pdf of the bivariate standard Cauchy distribution as given by

g(x, y) = υ(x)υ(y), x, y ∈ R.

This is the pdf of (X1,Z) as defined in the problem setup. Since, by construction, (2.1), X1 and X2
have the same sign, the pdf of (X1, X2) is twice as large as that of (X1,Z) when xy > 0 and is equal to
0 when xy < 0. Hence,

fX1,X2 (x, y) =

2υ(x)υ(y), xy > 0,
0, otherwise.

(3.1)
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Based on (3.1), the cdf of X1 + X2 can be obtained as

FX1+X2 (z) = P(X1 + X2 ≤ z) =
∫

x+y≤z
2υ(x)υ(y) dxdy, z ∈ R. (3.2)

Note that the joint density of (3.1) is symmetric about the origin and the distribution of X1 + X2 is
symmetric with respect to 0; that is, FX1+X2 (z) = 1 − FX1+X2 (−z). Therefore, it is sufficient to evaluate
it for a positive z. For z > 0, (3.2) becomes

FX1+X2 (z) =
1
2
+

∫
x≥0, y≥0, x+y≤z

2υ(x)υ(y) dxdy. (3.3)

To find the integral in (3.3), we develop the following Lemma 1.

Lemma 1. For z > 0,∫
x≥0, y≥0, x+y≤z

2υ(x)υ(y) dxdy =
1
2
− Υ(z) + 2

∫ z

0
υ(x)Υ(z − x) dx.

Proof: ∫
x≥0, y≥0, x+y≤z

2υ(x)υ(y) dxdy =
2
π2

∫ z

0

1
(1 + x2)

arctan(z − x) dx

= 2
∫ z

0
υ(x)

(
Υ(z − x) − 1

2

)
dx =

1
2
− Υ(z) + 2

∫ z

0
υ(x)Υ(z − x) dx.

Note the definitions of pdf and cdf of the univariate standard Cauchy distribution. �

By the direct application of Lemma 1, we have

FX1+X2 (z) = 1 − Υ(z) + 2
∫ z

0
υ(x)Υ(z − x) dx.

For illustration, this cdf is plotted in Figure 1 with the standard Cauchy cdf, the cdf of X1 + Z, which
is the sum of two independent standard Cauchy random variables, and the one of Cauchy(1, 1) as
references. Note the peculiar shape around z = 0.

Differentiating this cdf with respect to z, we have the pdf of X1 + X2; that is,

fX1+X2 (z) = −υ(z) + 2
d
dz

∫ z

0
υ(x)Υ(z − x) dx.

For differentiating the integral
∫ z

0 υ(x)Υ(z − x)dx, we use Leibnitz’s rule (Casella and Berger, 2002),
which results in

d
dz

∫ z

0
υ(x)Υ(z − x)dx =

1
2
υ(z) +

∫ z

0
υ(x)υ(x − z) dx. (3.4)

To complete the calculation, we need evaluate the integral in (3.4). Blyth (1986) used a similar
approach in Lemma 2 to find the density of the sum of two independent Cauchy random variables.



188 Hwi-Young Lee, Hyoung-Jin Park, Hyoung-Moon Kim

−10 −5 0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

C
D

F

SC
G(z)
F(z)
C(1,1)

Figure 1: The cdfs of the standard Cauchy distribution (denoted as SC), X1+Z (denoted as G(z)), X1+X2 (denoted
as F(z)), and Cauchy(1, 1) (denoted as C(1, 1)).

Lemma 2. For z > 0,∫ z

0
υ(x)υ(x − z)dx =

2
π2z

(
4 + z2) [

z arctan(z) + ln
(
1 + z2

)]
.

Proof: We write down the product of Cauchy densities as

υ(x)υ(z − x) =
1
π2

(
a + bx
1 + x2 +

c + d(x − z)
1 + (x − z)2

)
. (3.5)

The integration of the right-hand side of (3.5) is straightforward and we only need to find the constants
a, b, c, and d. Brought to a common denominator, the right-hand side has for its numerator a cubic in
x whose constant term must be 1 and whose other coefficients must all be 0. Solving these equations,
we get

a =
1

4 + z2 = c and b =
2

z
(
4 + z2) = −d.

Plugging in these values in (3.5), we have the result. �

We evaluated the density of X1+X2 for positive values. Due to symmetry of the density of X1+X2,
we have fX1+X2 (z) = fX1+X2 (−z). Finally, using Lemma 2 and after some calculations, the pdf of X1+X2
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Figure 2: Densities of the standard Cauchy distribution (denoted as SC), X1+Z (denoted as g(z)), X1+X2 (denoted
as f (z)), and Cauchy(1, 1) (denoted as C(1, 1)).

is given by

fX1+X2 (z) =


4

π2|z| (4 + z2) [
z arctan(z) + ln

(
1 + z2

)]
, |z| > 0,

0, otherwise.
(3.6)

For illustration, this density is plotted in Figure 2 with the standard Cauchy density, the density of
X1 + Z, which is the sum of two independent standard Cauchy random variables, and the density of
Cauchy(1, 1) as references. Obviously, from Figure 2, its bimodal form is not Cauchy.

Some interesting results are mentioned as remarks.

Remark 1. The conditional distributions of Xi, i = 1, 2 given X1 + X2 = z are as follows:

fXi |X1+X2=z(xi) =


π2|z|

(
4 + z2

)
υ(xi)υ(z − xi)

2
[
z arctan(z) + ln

(
1 + z2)] , xi(z − xi) > 0, |z| > 0,

0, otherwise.

by (3.1) and (3.6).

Remark 2. Suppose that X1 and Z are independent univariate standard Cauchy random variables.
If we make a new random variable X2 instead of (2.1) such that

X2 =

{
Z, X1 ≤ λz,
−Z, X1 > λz, λ ∈ R.
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Figure 3: (a) Histogram of X1 + X2; (b) Histogram of X1 + X2 + X3; (c) Histogram of X1 + X2 + X3 + X4 .

Then, the distribution of X2 follows a skew-Cauchy distribution having a pdf 2υ(x2)Υ(λx2), x2 ∈ R
(Azzalini and Capitanio, 1999).

Remark 3. One possible extension of constructing more than a new random variable can be done
similar to (2.1). Suppose that X1,Z1, and Z2 are independent standard Cauchy random variables. The
random variable X2 is the same as (2.1) replacing Z with Z1. X3 is constructed as

X3 =

{
|Z2|, X1 ≥ 0,
−|Z2|, X1 < 0. (3.7)

Then what is the distribution of X1 + X2 + X3? In a similar manner as (3.7), if we have another
standard Cauchy random variable Z3 independent of X1,Z1, and Z2, then a new random variable X4
can be constructed as follows:

X4 =

{
|Z3|, X1 ≥ 0,
−|Z3|, X1 < 0. (3.8)

We found the density of X1 + X2 which is given in (3.6). For a partial answer of the distributions of
X1 + X2 + X3, and X1 + X2 + X3 + X4, we simulated N = 100,000 samples from each independent
standard Cauchy distribution. By the constructions (2.1), (3.7), and (3.8), we obtained X2, X3, and X4
consecutively. The following Figure 3 shows the histograms of each random variable, that is, those of
X1 + X2, X1 + X2 + X3, and X1 + X2 + X3 + X4. Based on the Figure, we conjecture that if we increase
the number of components in the sum, then the density becomes heavier at the tails and less mass is
concentrated around 0.
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4. Conclusions

In this paper, we define a multivariate Cauchy distribution using a probability density function com-
monly adopted in modern mathematical statistics. Then Ferguson’s definition of a multivariate Cauchy
distribution can be viewed as a characterization theorem using the characteristic function approach as
in the multivariate normal distribution. We also illustrated that linear combinations of Cauchy random
variables need not themselves be Cauchy. The correct statement is that any linear combination of ran-
dom variables from a multivariate Cauchy distribution is Cauchy distributed; therefore, multivariate
Cauchy implies univariate Cauchy but not vice versa. The derivation is quite simple and is suitable for
presentation in statistics graduate theory courses. For future work, the exact densities of X1 + X2 + X3
and X1 + X2 + X3 + X4 need to be developed. Furthermore, it is desirable to develop the approximate
distribution of

∑n
i=1 Xi when n→ ∞.
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