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Abstract — An inverse problem is solved to determine the space-dependent thermal conductivity in one-dimen-
sional time-dependent heat conduction medium with the data imposed and measured at the two end-points.
The thermal conductivity is approximated as a linear combination of known functions with unknown coeffi-
cients and the unknowns are obtamed by the governing and sensitivity equations using moditied Newton-Raph-
son method, The cstimated results are compared wath exact thermal conductivities and it shows good agree-
ments. This approach is expected to be vsed to estimate spatial composition of heat conduction medim.

1. Introduction

The estimation of the thermal conductivity is an
interesting subject in the engineering application as
well as in the inverse problem. For inhomogeneous
medium, the thermal conductivity varies with position
and an accurate estimation of the spatially varying
thermal conductivity is necessary n many thermal
management system. Also, this kind of problem may
be encountered in geological waste disposal and also
have applications in petroleum engineering.

Many engineering and mathematics researchers
have considered the inverse heat conduction problem
(IHCP). The THCP may be classified into two catego-
ries; the determination of thermal properties like ther-
mal conductivity and heat capacity, and the estimation
of boundary/initial conditions or heat sources from a
knowledge of the temperature and/or heat flux mea-
surements taken at the interior and/or boundary of the
heat conduction medium. Regarding the former, some
researches focused on the ternperature-dependent ther-
mal properties”™ and others dealt with the space-
dependent ones™®, They used the data measured at
interior medium in their inverse algorithms™® In this
study. the space-dependent thermal conductivity in
one-dimensional time-dependent heat conduction me-
dium is obtained based on sensitivity equation app-
roach. Especially, the algorithm in this work does not
require any interior measurements, In practical appli-

catdon such as tomographic technique, the boundary
measurements are more common and practical than
interior reasurements.

Also, 1n order to obtain the mverse solution, modi-
fied Newton-Raphson method is introduced. Many
numerical experiments are performed for vardous spa-
tially varying thermal conductivities to compare the
estimated ones with the exact ones. In the compari-
son, the proposed inverse algorithm shows reasonably
good predictability.

2. Mathematical Model

In order to estunate the spatially varying thermal
conductivity in one-dimensional domain k(x), the fol-
lowmg linear form of thermal conductivity is assumed:

N

K(x)=Y k.0,(x),

n=1

n

where ¢,(x) can be any first order derivative continu-
ous function in the problem domain and k, are the
onknown cocfficients. N is an integer. Thus, the pre-
sent wnverse problem is converted into the problem to
identify the coefficient k.

Consider an infinite slab with thickness L and sup-
pose that this slab is a time-dependent heat conduc-
tion medmn, Initially, the temperature distribution 1n
the slab is uniform and T,. At a specific tme, t=0, a
heat flux Q. is applied to the front surface at x=0
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and another heat flux Q- is applied to the back sur-
face at x=L. The heat conduction equation can be
non-dimensionalized with T, i, reference thermal
conductivity ]Z, and heat capacity per unit volume
E;p The dimensionless governing equation becomes

J (I\BT I (0,15, 50 )

ox/ o’
with an initial condition
T(x,0)=1, xe [0,1], t=0 {3
and boundary conditions

kgT—ql, x=0, t>0,

dT
—k—— . ox=l, ]
5 q., x=1, t>0 ()

The dimensionless variables are defined as
- T=:, k=:, =— 1= (5)

The present paper suggests an iterative algonthm to
find the space-dependent thermal conductivity. The
algorithm consists of two phases; the forward prob-
lem phase and the inverse problem phase. In the for-
ward problem phase, the thermal conductivity k(x) is
assumed as a known value and the temperature distri-
bution can be easily obtained. The numerically obta-
ined temperature distribution will be compared with
measured temperatures at specified locations. In the
inverse problem phase, a linearization method is used
to guide the assumed k(x) to approach the actual
value, Then an intermediate value of thermal conduc-
tivity is replaced with the assumed one in the forward
problem phase. This procedure is repeated umfil the
convergence critena are satisfied.

In order to decide the search step in each iteration,
the sensitivity equations are introduced”. The sensitiv-
ity equations are defined as the derivative dfdk, of
Bqs. (2)~(4) and it can be expressed as

G‘X.\
¢( )Bx ETE xe(0,1), =20  (6)
with an initial condition
X,(x,0)=0. x& [0.1], t=0 7

olx=E Mod M= 2o00d 23

and boundary conditions

X, 6(0)
—k—ax a— qu. =0, 10,

oX, ofl)
k_Bx = x=1.t>0 (8)

where the sensitivity X,=dT/dk,. These sensitivities
can be obtamed il k{x} and T are given.

The forward and sensitivity equations are spatially
discretized using the finite element method and the
temporal discretization is achjeved by Crank-Nichol-
son representation.

The search step is determined by the following pro-
cedure. At first, the discrepancy function is defined as

To(l. m=Tul, m)—T(l, m) @

where T, and T, are calculated and measured tem-
perature at spatial coordinate 1 (J=1...L) and ternporal
coordinate m {m=1...M). The discrepancy vector is
defined as a column vector of dimension LM whose
components are the discrepancies between the calcu-
lated and the measured temperatres at both end

points (that is L=2},

(To)={Ta}={T}

and the column vector {k}={k,. ks -, ku}" should

satisty
[TD}:[Tkal}i{Tmem}:O' (10)

This will be expressed as a least square problem to
find the coefficient vector {k) minimizing the objec-
tive function

)= (T} (T, (1)

Many researches constructed the object function by
usmg the data measured at interior medium in their
inverse algorithms™*. However, in practcal applica-
tion, it is better to use the data which measured ar the
boundaries.

The modified Newton-Raphson method is imple-
mented to solve the above nonhmear least square
problem and the subroutine DUMIDH of the IMSL"
is used. The Jacobian of the chjective function is cal-
culated from the sensifivity solution:
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In this, {X,(1, m}} is a column vector whose compo-
nents are the sengitivity value at spatial coordinate |
and temporal coordinate m, and these are obtamed
from the sensitivity equations, Egs. (6)-(8).

3. Examples

For the evaluation of the proposed algorithrn, three
examples are introduced. The model function to
approximate the thermal conductivity is assumed to
be a fourth-order polynomial {N=5}.

The boundary heat fluxes are taken as q=10 and
=10, that is, at both sides the heat is added to the
medium. The nitial values of thermal conductivity
coefficients are set to unity, k=1.

The followings are the description of the illustrative
examples:

Example 1. k(x)=1+2x+3x’

Example 2. k(x)=l+«/)_(
1
E le 3. k(x)=14—
xample 3. k(x) |
For all examples, the spatial domain is equally dis-
cretized into 10 quadratic elements and the calcula-
ton is terminated at t=[. The measurement is
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Fig. 1. The estimated thermal eonductivity in Exam-

ple 1.
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Fig. 2, The estimated thermal conductivity in Exam-
ple 2.

assumed to be made 20 times (i.e. M=20) only at the
end points (i.e. 1.=2).

The predicted and real thermal conductivities for
Examples 1~3 are compared in Figs. [~3. respec-
tively. In all examples. the fourth-order pelynomial
can reproduce the exact thermal conductivity distribu-
ton satisfactorily. As shown in these figures, the posi-
tions at which maxunum local errors occur are de-
pendent on the real conductivity profiles.

The overall estimated error is defined to investigate
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Fig. 3. The estimated thermal conductivity in Exam-
ple 3.

Energy Engg J (2000), Vol. 9(1)



40 Sm Kim. Min Chan Kim, Yoon-Joon Lee and Jung-Heon Lee

Table 1. The estimated results and the estimated errors.

N
No, Exact k(x) Estimated thermal conductivity Zk“q),(x) Estimated
errar
1 1+2x+3x 0.976949842 49 | 069x+1.194975x*+0.8326064x*+0.7504H93x" 0.018519
2 1+4x 1.125001+1.820492x—1,129985x"—0.5216538x+0.723717 1 x* (.008281
1 .
3 1+m 1.995705-1.845189x42.590048x°—2 129298x°+0.7248000x" 0.000537

the deviation of the estimated thermal conductivity
from the exact value:

[/ et Phetoas
E= - . (13)
| k(x)dx

Table 1 shows the estimated result and the error for
each example. The estimated thermal conductivities
are obtained within 2% relative error for all of 3
examples, From this, it is shown that our algorithm
can predict the thermal conductivity profiles which
show monotonic increase or decrease in space.

4, Conclusion and Further Studies

A numerical algorithm is presented to estimate the
space-dependent thermal conductivity in one-dimensicnal
time-dependent heat conducton medium without inte-
rior measurements. The algorithin is composed of two
phases, namely the forward problem phase and the
mverse problem phase, and they are iteratively applied.
In each phase, the heat conduction equation and the
sensitivity equations are solved, respectively. The for-
ward and inverse solutions are used to find the search
step by modified Newton-Raphson method. Several
examples with thermal conductivities are wntroduced
to demonstrate the usefulness of the proposed algo-
rithm and the estimated thermal conductivities are
successfully compared with the exact ones. The pro-
posed method may be applicable to the estimation of
the spatial composition in heat conduction medium.
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