• Title/Summary/Keyword: linear actuator

Search Result 634, Processing Time 0.03 seconds

Design of Integral Observers for Unknown Actuator Faults Estimation (구동기의 미지고장추정을 위한 적분관측기 설계)

  • Ahn, P.;Lee, M.K.;Kim, J.I.
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.93-98
    • /
    • 2006
  • This paper deals with the estimation of unknown actuator faults for linear dynamic systems with sensor noise. The presented method based on the integral observer permits to achieve good convergence and exact estimation of unknown faults. The validity of proposed method is established by using the simulation results which compare to the existing methods.

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

Design of PI Observers for Unknown Actuator Faults Estimation (구동기의 미지고장추정을 위한 PI관측기 설계)

  • Ahn, Pius;Kim, J.B.;Lee, M.K.
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.54-59
    • /
    • 2007
  • This paper deals with the estimation of unknown actuator faults for linear dynamic systems with sensor noise. The presented method based on the PI(proportional-integral) observer permits to achieve good convergence and exact estimation of unknown faults. The validity of proposed method is established with simulation results and comparisons to the existing methods.

CONVERTER DESIGN AND CONTROL OF PIEZOELECTRIC ACTUATORS IN SLIDING MODE OPERATION

  • Palis F.;Heller D.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.785-789
    • /
    • 2001
  • Piezoelectric actuators are characterized by non-linear dynamics and high frequency oscillations of the piezocrystal. Both properties have to be taken into consideration when optimizing real time systems. Taking benefit of the almost linear behaviour between charge and strain, current source fed piezoelectric actuators are given preference for high dynamic applications. Here special emphasis is put on current sources for multi-actuator systems and the controller design for optimal system integration of the actuator. It is shown that sliding mode operation of the converter system offers good possibilities to guaranty high accuracy and dynamics of the actuators system. The presented multi-actuator system is used for positioning and vibration damping in flexible mechanical systems.

  • PDF

A Precision Position Control of Antenna Driving System in Naval Vessel (함상 안테나 구동용 안정화장치의 정밀 위치제어)

  • Cho, Taik-Dong;Seo, Song-Ho;Nam, Ki-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.190-196
    • /
    • 2001
  • The naval vessel must moves rolling, pitching, yawing by wave when it runs in ocean. Some narrow beam antenna needed position compensation by stabilizer or gimbal for best performance. This paper presents the precision position control for heavy weight(130kg) in roll and pitch direction. Generally it's called for gimbal. This gimbal uses P-I controller, and it's driven by linear actuator and servo motor. This gimbal gets ship's gyro signal and synchro, which have the absolute angle value. Some other similar equipments are driven by huge hydraulic power, but this gimbal is driven by small servo motor. This control loop gets the following procedure repeatedly; reading ship gyro and gimbal synchro, calculating compensated error and control output, driving motor and actuator The performance of gimbal system was satisfied.

  • PDF

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

Electric-Field-Induced Strain Properties of Multi Layer Ceramic Actuator Using PMN-PZ-PT Ceramics (PMN-PZ-PT 세라믹스를 이용한 적층형 액츄에이터의 변위특성)

  • Ha, Mun-Su;Jeong, Soon-Jong;Koh, Jung-Hyuk;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.620-623
    • /
    • 2003
  • Non-linear behaviors of multilayer piezoelectric ceramic actuator (MCA) were investigated under electrical and mechanical stress. DC 100 V bias was applied to the MCA to obtain displacement. Laser vibrometer, which using Doppler effect, was employed to characterize displacement caused by $d_{33}$ mode of MCA. To understand this non-linear behavior of MCA, displacement was measured and compared under different load states. By increasing load, electric field-induced strain and piezoelectric constant($d_{33}$) of MCA was decreased. We attribute this phenomenon to the domain wall motion and depoling of MCA under heavy load.

  • PDF

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

A Study on the Reliability Analysis for a Linear Type Pneumatic Actuator with Cross Roller Guide (리니어 타입 크로스 롤러 가이드 공압 액추에이터의 신뢰성 평가에 관한 연구)

  • Shin Bong-Cheol;Cho Myeong-Woo;Kang Sung-Min;Lee Soo-Jin;Choi Jin-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.184-189
    • /
    • 2006
  • This research presents the performance analysis of the linear type pneumatic actuators that are used in semi-conductor assembly line to transfer some product with high accuracy. To increase positioning and repetitive accuracies, a cross roller guide is implemented inside the pneumatic actuator. The finite element method is used to verify the force against working moments, and reliability analysis is performed to classify the breakdown cases. Also, reliability, failure rate, probability density function, and $B_{10}$ to life are estimated under the boundary of thrust or air leakage conditions. In this study, the failure probabilistic function of the pneumatic actuators is analyzed using Weibull distribution.

A Study on the Dynamic Analysis of a Reciprocating Linear Actuator for Gas Compression Considering Pressure Using Finite Element Method (압력을 고려한 압축기용 선형 엑츄에이터의 동특성 유한요소해석에 관한 연구)

  • Kim, Ki-Chan;Jung, In-Soung;Yoon, Sang-Baeck;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.168-170
    • /
    • 1997
  • This paper presents the dynamic analysis of a reciprocating actuation system based on moving magnet actuator for gas compression. For the analysis of the linear actuator, an axisymmetric finite element method (FEM) considering the saturation effect of the magnetic material is used, and electrical circuit equation, mechanical dynamic equation and pressure dynamics are coupled. In the FE analysis, we adopt a moving line technique. The pressure dynamics of the gas in the compressor is modeled by using the law of thermodynamics. The analysis results are compared fairly well with experimental ones.

  • PDF