• Title/Summary/Keyword: linear Jordan derivation

Search Result 29, Processing Time 0.033 seconds

ON CONTINUOUS LINEAR JORDAN DERIVATIONS OF BANACH ALGEBRAS

  • Park, Kyoo-Hong;Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.227-241
    • /
    • 2009
  • Let A be a Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $[D(x),\;x]D(x)^2[D(x),\;x]\;{\in}\;rad(A)$ for all $x\;{\in}\;A$. Then we have D(A) $\subseteq$ rad(A).

  • PDF

DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Choi, Young-Ho;Lee, Eun-Hwi;Ahn, Gil-Gwon
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.305-317
    • /
    • 2000
  • It is well-known that every derivation on a commutative Banach algebra maps into its radical. In this paper we shall give the various algebraic conditions on the ring that every Jordan derivation on a noncommutative ring with suitable characteristic conditions is zero and using this result, we show that every continuous linear Jordan derivation on a noncommutative Banach algebra maps into its radical under the suitable conditions.

CHARACTERIZATIONS OF JORDAN DERIVABLE MAPPINGS AT THE UNIT ELEMENT

  • Li, Jiankui;Li, Shan;Luo, Kaijia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.277-283
    • /
    • 2022
  • Let 𝒜 be a unital Banach algebra, 𝓜 a unital 𝒜-bimodule, and 𝛿 a linear mapping from 𝒜 into 𝓜. We prove that if 𝛿 satisfies 𝛿(A)A-1+A-1𝛿(A)+A𝛿(A-1)+𝛿(A-1)A = 0 for every invertible element A in 𝒜, then 𝛿 is a Jordan derivation. Moreover, we show that 𝛿 is a Jordan derivable mapping at the unit element if and only if 𝛿 is a Jordan derivation. As an application, we answer the question posed in [4, Problem 2.6].

A RESULT OF LINEAR JORDAN DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Chang, Ick-Soon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1998
  • The purpose of this paper is to prove the following result: Let A be a noncom mutative Banach algebra. Suppose that $D:A{\rightarrow}A$ is a continuous linear Jordan derivation such that $D^2(x)D(x)^2{\in}rad(A)$ for all $x{\in}A$. Then D maps A into its radical.

  • PDF

LINEAR JORDAN DERIVATIONS ON BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.539-546
    • /
    • 1998
  • Let A be a noncommutative Banach algebra. Suppose that a continuos linear Jordan derivation D:A$\longrightarrow$A is such that either $[D^2(\chi),\chi^2]\;or\;(D^2(\chi),\chi]+(D(\chi))^2$ lies in the jacobson radical of A for all $\chi$$\in$A. Then D(A) is contained in the Jacobson radical of A.

CHARACTERIZATIONS OF (JORDAN) DERIVATIONS ON BANACH ALGEBRAS WITH LOCAL ACTIONS

  • Jiankui Li;Shan Li;Kaijia Luo
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.469-485
    • /
    • 2023
  • Let 𝓐 be a unital Banach *-algebra and 𝓜 be a unital *-𝓐-bimodule. If W is a left separating point of 𝓜, we show that every *-derivable mapping at W is a Jordan derivation, and every *-left derivable mapping at W is a Jordan left derivation under the condition W𝓐 = 𝓐W. Moreover we give a complete description of linear mappings 𝛿 and 𝜏 from 𝓐 into 𝓜 satisfying 𝛿(A)B* + A𝜏(B)* = 0 for any A, B ∈ 𝓐 with AB* = 0 or 𝛿(A)◦B* + A◦𝜏(B)* = 0 for any A, B ∈ 𝓐 with A◦B* = 0, where A◦B = AB + BA is the Jordan product.

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.