• Title/Summary/Keyword: line to ground fault

Search Result 257, Processing Time 0.026 seconds

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1719-1720
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, 3 fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a loom length HTS power cable. The authors developed a single line-to-ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable.

  • PDF

Development of Algorithm and Program for the Ground Fault Detection in Ungrounded Distribution Power System (비접지 배전계통 지락고장 검출 알고리즘 및 프로그램 개발)

  • Park, So-Young;Shin, Chang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2619-2627
    • /
    • 2009
  • The ground fault is occupying 70% among the total number of faults in ungrounded distribution power system. When the ground fault occurs in ungrounded system, the fault current is so small that it is hard to detect. But fault handling is very important because to continue power supply during fault conditions may cause the fault spreading and the distribution device in trouble. This paper presents the fault line detection method by using GPT signal detecting zero sequence voltage, and the fault section detection method by detecting whether GPT signal is disappeared or not during shifting normally open switch, which is connecting switch between distribution lines with open state in order to restore the outage area under emergency situation, and during isolating each section one by one which belongs to the fault line. This method is efficient because there is no whole power interruption during the fault section detection, and it is possible to perform both the fault section detection and the service restoration for the outage area at the same time, and it can apply to various distribution system configuration. Program for the fault restoration was developed applying proposed method, and it has been validated by applying to the pilot project of distribution automation system in Vietnam which has the ungrounded distribution system.

A Study on the Reliability Improvement Plan on Electric Leakage & Ground Fault of Low-voltage Electrical Line (저압전로의 누전.지락에 대한 신뢰성향상 방안에 관한 연구)

  • Kang, Kyung-Won;Yoon, Myung-O;Gu, Seon-Hwan;Song, Young-Joo
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.136-145
    • /
    • 2011
  • One of a large proportion among the causes of fire is electrical factors, and of fire by electric factors, the accident which accounted for over certain percentage is electric leakage and ground fault. In order to reduce the electric leakage and ground fault, the technical guidelines on the protection of ground fault in the low-voltage electrical line (KECG 1091-2011) was amended for reflecting recent international standard, IEC 60364-4-41, and new conservation methods, which improved the reliability by recovering the facility's all-time use operation and breakdown defect, was on the rise. Accordingly, in this paper, after grasping the fire's status for last 10 years and analyzing the risk of electrical fires, and as a way to improve the electric leakage and ground fault accident which accounted for more than certain percentage, the revision of KECG 1091-2011 will be reviewed. And then, after applying to the preventive conservation methods in order to enhance the protection reliability of electric leakage and ground fault detection, the problems at issue routine inspection scheme and durable years scheme in time-scheduled conservation method are listed, along with suggestion of the problem-solving scheme, and the leakage current integrated monitoring systems and digital electric leakage devices by status monitor conservation method will be proposed.

An Improved Method for Fault Location based on Traveling Wave and Wavelet Transform in Overhead Transmission Lines

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.51-60
    • /
    • 2012
  • An improved method for detecting fault distance in overhead transmission lines is described in this paper. Based on single-ended measurement, propagation theory of traveling waves together with the wavelet transform technique is used. In estimating fault location, a simple, but fundamental method using the time difference between the two consecutive peaks of transient signals is considered; however, a new method to enhance measurement sensitivity and its accuracy is sought. The algorithm is developed based on the lattice diagram for traveling waves. Representing both the ground mode and alpha mode of traveling waves, in a lattice diagram, several relationships to enhance recognition rate or estimation accuracy for fault location can be found. For various cases with fault types, fault locations, and fault inception angles, fault resistances are examined using the proposed algorithm on a typical transmission line configuration. As a result, it is shown that the proposed system can be used effectively to detect fault distance.

Analysis on Recloser-Fuse Coordination in Loop Power Distribution System with Superconducting Fault Current Limiters (루프화 배전계통에 초전도 한류기 적용에 따른 Recloser-Fuse 보호협조 분석)

  • Choi, Kyu-Wan;Kim, Soo-Swan;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.111-115
    • /
    • 2015
  • Recently, protection coordination issues can occur due to increased fault current in power system when power system being changed radial power system to grid system such as loop power system, micro grid and smart grid. This paper analyzed Recloser-Fuse coordination in loop power distribution system with Superconducting Fault Current Limiters(SFCLs) when single line ground fault occur in loop power distribution system with SFCLs. We analyzed Recloser-Fuse Coordination in radial power distribution system and changed coordination caused by increased Fault current because of loop system when single line ground fault occur in power distribution system. This paper simulated to improve changed coordination using SFCLs in loop power distribution system. Power distribution system, SFCLs and protective devices are modeled using PSCAD/EMTDC.

The Basic Study on Overvoltage of HVDC Transmission Line Using TNA (계통과도전압분석기를 이용한 직류송전선로의 과전압에 대한 기초적 해석)

  • Woo, Jung-Wook;Shim, Jeong-Woon;Kwak, Joo-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1810-1812
    • /
    • 1997
  • This paper describes the results of ground fault analysis on HVDC Transmission Line using TNA (Transient Network Analyzer). The maximum overvoltage is about 1.7 p.u. in the case of single line to ground fault on the overhead transmission line. When the cable is linked to the end of the overhead transmission line, the maximum overvoltage is about 1.58 p.u..

  • PDF

Fault Location Algorithm for Parallel Transmission Line with a Teed Circuit (병행 2회선의 T분기 선로 고장점 표정 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee;Lee, Seeng-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.49-51
    • /
    • 2000
  • This paper presents a fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line. This algorithm uses only local end voltage and current information. Remote end and fault currents are calculated by using distribution factors. To reduce load current effect, negative sequence current is used. EMTP simulation result have shown effectiveness of the algorithm under various conditions.

  • PDF

Transferred OverVoltages on LV sides in Multigrounded Neutral during Line to Ground Fault on Distribution Systems (배전계통의 고저압 혼촉고장시 중성선 전위상승에 따른 저압기기 스트레스 전압)

  • Choi, Sun-Kyu;Choi, Jong-Kee;Kim, Kyoung-Hun;Choi, Myeong-Ho;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.910-915
    • /
    • 2012
  • In this paper we propose multi-grounded neutral design method which was considered of transferred transient overvoltage when line to neutral fault occurs. Specially, In order to confirm the actual transient overvoltage magnitude which occurs on neutral line, we considered some screening(shielding) effects. The screening coefficient was deducted from field test results and calculation in a distribution line which is identical with an actual power line. The purpose of this paper is to attempt to suggest the guidance for grounding skystem design considering limitation of overvoltage for LV side in IEC 61936. The result is based on EMTP simulation and real field faults situation in distribution lines.

A Study on the Protection Wire Type Decision of Catenary System in the 350km/h High Speed Line (350km/h급 고속전차선로 보호선의 선종결정 기법에 관한 연구)

  • Lee, Hack-Pyo;Seo, Ki-Bum;Park, Jae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1818-1823
    • /
    • 2015
  • In this paper, we analyzed the optimal configuration of protection wire that have been installed in the electric railway power supply system. Protection wires are to suppress the ground potential rise when the short circuit fault between contact wire-rail(C-F), and protect the electronics equipments(signalling and communication) that are facility the wayside. The role of protection wires must be feed back quickly the fault current to the substation when a short circuit fault occurs. In this paper, we proposed that only one line to install the protection wire. Comparing how to newly proposed and existing system, most of the performance is similar. The reason is that most of the current flowing in the protection wire near the location where the fault occurred. There is no problem even if in one line for human safe and the low impedance of the return circuit in dimension to ensure the safety of the facility during the fault. To ensure safety during an fault occurs, it is sufficient even by one line. But, In the protection wire of facilities planning it is necessary to design taking into account the potential utility.

A Study on the Fault Current of Distribution System according to Connection of Wind Turbine Generation Grid-Connected Transformer (풍력발전 계통연계 변압기의 결선에 따른 배전계통의 고장전류에 관한 연구)

  • An, Hae-Joon;Ro, Kyoung-Soo;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.369-371
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF