• Title/Summary/Keyword: limited diffraction

Search Result 115, Processing Time 0.026 seconds

Preconditions for High Speed Confocal Image Acquisition with DMD Scanning.

  • Shim, S.B.;Lee, K.J.;Lee, J.H.;Hwang, Y.H.;Han, S.O.;Pak, J.H.;Choi, S.E.;Milster, Tom D.;Kim, J.S.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.39-40
    • /
    • 2006
  • Digital image-projection and several modifications are the classical applications of Digital Micromirror Devices (DMD), however further applications in the field of optical metrology are also available. Operated with certain patterns, a DMD can function, for instance, as an array of pinholes that may substitute the Galvanic mirror or the stage scanning system presently used for 2 dimensional scanning in confocal microscopes. The various process parameters that influence the result of measurement (e.g. pinhole size, lateral scanning pitch and the number of pinholes used simultaneously, etc.) should be configured precisely for individual measurements by appropriately operating the DMD. This paper presents suitable conditions for the diffraction limited analysis between DMD-optics-CCD to achieve the best performance. Also sampling theorem that is necessary for the image acquisition by scanning system is simulated with OPTISCAN which is the simulator based on the diffraction theory.

  • PDF

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.

On the Reaction Kinetics of GaN Particles Formation from GaOOH (GaOOH로부터 GaN 분말 형성의 반응역학에 관하여)

  • Lee Jaebum;Kim Seontai
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.348-352
    • /
    • 2005
  • Gallium oxyhydroxide (GaOOH) powders were heat-treated in a flowing ammonia gas to form GaN, and the reaction kinetics of the oxide to nitride was quantitatively determined by X-ray diffraction analysis. GaOOH turned into intermediate mixed phases of $\alpha-\;and\;\beta-Ga_2O_3$, and then single phase of GaN. The reaction time for full conversion $(t_c)$ decreased as the temperature increased. There were two-types of rapid reaction processes with the reaction temperature in the initial stage of nitridation at below $t_c$, and a relatively slow processes followed over $t_c$ does not depends on temperatures. The nitridation process was found to be limited by the rate of an interfacial reaction with the reaction order n value of 1 at $800^{\circ}C$ and by the diffusion-limited reaction with the n of 2 at above $1000^{\circ}C$, respectively, at below $t_c$. The activation energy for the reaction was calculated to be 1.84 eV in the temperature of below $830^{\circ}C$, and decreased to 0.38 eV above $830^{\circ}C$. From the comparative analysis of data, it strongly suggest the rate-controlling step changed from chemical reaction to mass transport above $830^{\circ}C$.

Half mJ Supercontinuum Generation in a Telecommunication Multimode Fiber by a Q-switched Tm, Ho:YVO4 Laser

  • Zhou, Renlai;Ren, Jiancun;Lou, Shuli;Ju, Youlun;Wang, Yuezhu
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • Up to ${\sim}520{\mu}J$ broadband mid-infrared (IR) supercontinuum (SC) generation in telecommunication multimode fiber (MMF) directly pumped by a $2.054{\mu}m$ nanosecond Q-switched Tm, $Ho:YVO_4$ laser is demonstrated. An average output power of 3.64 W is obtained in the band of ~1900 to ~2600 nm, and the corresponding optic-to-optic conversion efficiency is 67% by considering the coupling efficiency. The spectrum has extremely high flatness with negligible intensity variation (<2%) in the wavelength interval of ~2070 to ~2475 nm. The SC long-wavelength edge is limited by the silicon glass material loss, and by optimizing the MMF length, the SC spectrum could extend out to ${\sim}2.6{\mu}m$. The output SC pulse shapes are measured at different output powers, and no splits are found. The SC laser beam is nearly diffraction limited with an $M^2=1.15$ in $2.1{\mu}m$ measured by the traveling knife-edge method, and the laser beam spot is monitored by an infrared vidicon camera.

Micromachining of Cr Thin Film and Glass Using an Ultrashort Pulsed Laser

  • Choi, Ji-Yeon;Kim, Jae-Gu;Shin, Bo-Sung;Whang, Kyung-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.160-164
    • /
    • 2003
  • Materials processing by ultrashort pulsed laser is actively being applied to micromachining technology due to its advantages with regard to non-thermal machining. In this study, materials processing with ultrashort pulses was studied by using the high repetition rate of a 800 nm Ti:sapphire regenerative amplifier. This revealed that the highly precise micromachining of metallic thin film and bulk glass with a minimal heat affected zone (HAZ) could be obtained by using near damage threshold energy. Grooves with diffraction limited sub-micrometer width were obtained with widths of 620 nm on Cr thin film and 800 nm on a soda-lime glass substrate. The machined patterns were investigated through SEM images. We also phenomenologically examined the influence of variations of parameters and proposed the optimal process conditions for microfabrication.

Optical system design for laser scanning unit (Laser Scanning Unit용 광학계 설계)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 1999
  • Laser Scanning Unit (LSU), which is one of the core parts of laser printer, consists of LD Module, cylinder lens, polygon mirror and f$\theta$ lens. After making an initial design on each part, we optimized the one which satisfies the user specification. The optimized optical system has diffraction limited performance for the slit size of 2.7 mm$\times$1.6 mm, f$\theta$ characteristics less than 0.3% and field curvature less 1.2 mm. We also calcurate tolerance of each part based on RSS(Root Sum Square) method to manufacture LSU for mass production.

  • PDF

Development of Friction Welding Process of Zr-based Bulk Metallic Glasses (Zr-기 벌크 금속 유리의 마찰 접합 공정 개발)

  • Shin, Hyung-Seop;Jeong, Young-Jin;Kim, Ki-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.337-341
    • /
    • 2004
  • Bulk metallic glasses(BMG) with good mechanical properties have problems that engineering application fields have been limited because of limitation of the alloy size. In order to solving this problem, the friction welding of BMG has been tried using the superplastic-like deformation behavior under the supercooled liquid region. The apparatus for friction welding test was designed and constructed using pneumatic cylinder and gripper based on a conventional lathe. Friction welding have been tried to combination of same BMG alloy and crystalline alloys. The results of welding test were evaluated by X-ray diffraction, measurement of hardness and mechanical properties test. In order to obtain the optimized welding test conditions the temperature of friction interface was measured using Infrared thermal imager.

  • PDF

Titanium Dioxide Sol-gel Schottky Diodes and Effect of Titanium Dioxide Nanoparticle

  • Maniruzzaman, Mohammad;Zhai, Lindong;Mun, Seongcheol;Kim, Jaehwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2343-2347
    • /
    • 2015
  • This paper reports the effect of Titanium dioxide (TiO2) nanoparticles on a TiO2 sol-gel Schottky diode. TiO2 nanoparticles were blended with TiO2 sol-gel to fabricate the Schottky diode. TiO2 nanoparticles showed strong anatase and rutile X-ray diffraction peaks. However, the mixture of TiO2 sol-gel and TiO2 nanoparticles exhibited no anatase and rutile peaks. The forward current of the Schottky diode drastically increased as the concentration of TiO2 nanoparticles increased up to 10 wt. % and decreased after that. The possible conduction mechanism is more likely space charge limited conduction.

Optical perfornance depending on input wavefront distortion (입력광파면 왜곡에 따른 광학계 성능)

  • 김연수;김현숙;최세철;김창우;이윤우;송재봉;김병윤
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.172-176
    • /
    • 2001
  • Optical performance depending on the input wavefront distortion is analyzed in terms of StreW ratio. The amplitude of wavefront distortion at the optic axis that gives the system diffraction limited optical performance is described quantatively from the analysis of the Strehl ratio, which is obtained at the image plane using the input wavefront that is characterized by low and high spatial frequency. uency.

  • PDF

SPACE SOLAR TELESCOPE

  • AI GUOXIANG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.415-418
    • /
    • 1996
  • Space Solar Telescope (SST) is a space project for solar research, its main parameters are that total weight 2.0T, sun synchronous polar circular orbit, altitude of the orbit 730KM, 3 axis stabilized attitude system, power 1200W, telemetry of the downlink rate 30Mb/s, size $5{\ast}2{\ast}2\;M^3$, mission life 3 years. It is expected it will be launched in 2001 or later. The main objective is structure and evolution of solar vector magnetic field with very high spatial resolution. The payloads are consisted of 6 instruments: Main optical telescope with 1-M diameter and diffraction limited resolution 0.1 arc second, EUV imaging telescope with a bundle of four telescopes and 0.5 arc second resolution, spectrometric optical coronagraph, wide band spectrometer, H-alpha and white light telescope and solar and interplanetary radiospectrometer. An assessment study between China and Germany is under operation.

  • PDF