• Title/Summary/Keyword: limit pressure

Search Result 903, Processing Time 0.026 seconds

Comparative Study on Mechanical Properties and Dimensional Stability of Staypak and Wood-Polymer Composites from Populus alba × P. Glandulosa wood (현사시나무로 제조(製造)된 열압축목재(熱壓縮木材)와 목재(木材)-고분자(高分子) 복합체(複合體) 재질(材質)의 비교연구(比較硏究))

  • Pak, Sang-Bum;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.14-34
    • /
    • 1985
  • One of the techniques for altering the properties of wood that has received considerable attention in the last twenty years is the formation of a wood-polymer composite (WPC) by irradiation and heat-catalyst polymerization of a monomer incorporated into the wood matrix. Wood-polymer composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC and Staypak. The species examined was Hyunsasi-Namoo (Populus alba ${\times}$ P. glandulosa) which had not been utilized yet. Methylmethacrylate (MMA) as monomer, benzoyl peroxide (BPO) as initiator and methyl alcohol as bulking agent were used. The monomer containing BPO was impregnated into wood pieces by the dipping and the vacuum process for 2 hours. After impregnation, the treated samples were polymerized on the hot press with pressure and heat-catalyst methods. The results obtained were summarized as follows 1. The monomer loading into wood by the dipping process was 12.13 percent and 29.99 percent by the vacuum. The polymer loading into wood by the dipping process was 6.79 percent and 15.44 percent by the vacuum. 2. Comparing with Staypak, antishrink efficiency (ASE) of WPC was 12.5 to 13.6 percent on the radial direction and 14.70 to 18.63 percent on the tangential. Antiswelling efficiency (AE) was 14.40 to 17.22 percent on the radial direction and 17.18 to 42.1 8 to 42.14 percent on the tangential. Reduction in water absorptivity (RWA) was 8.19 to 15.5 percent. As a whole, the vacuum process was better than the dipping. 3. The specific gravity of control, Staypak and WPC were 0.44, 0.66 and 0.61 to 0.62, respectively. 4. In the bending strength test, the strength in case that the load direction is on the radial surface was greater than that which the load direction is on the tangential. 5. Increasing rate of stress at proportional limit in compression perpendicular to grain was 72.26 percent in case of WPC by the dipping process, 78.93 percent by the vacuum and 99.09 percent in case of Staypak.

  • PDF

Effects of Steam Flaking on In situ DM Digestibility and Aflatoxin and Ochratoxin Contents during Storage of Corns (옥수수의 steam flake 처리가 in situ 건물소화율 및 저장기간별 aflatoxin과 ochratoxin 함량에 미치는 영향)

  • Lee, Shin-Ja;Lee, Ji-Hun;Shin, Nyeon-Hak;Hyun, Jong-Hwan;Moon, Yea-Hwang;Lee, Sang-Suk;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1561-1569
    • /
    • 2008
  • This study was conducted to investigate the effects of steam flaking of corn grains on in situ dry matter degradability in the rumen and contents of mycotoxins (aflatoxin, ochratoxin) during storage. Yellow dent corns imported from USA and India were flaked, and stored for 8 weeks under the standard temperature and pressure (STP; $25^{\circ}C$/ 1 atm.). Experimental treatments were composed of four corn grains (untreated-USA corn, USCW; steam flaked-USA corn, USCF; untreated-India corn, IDCW; steam flaked-India corn, IDCF) with 4 replications according to 9 storage periods (0, 1, 2, 3, 4, 5, 6, 7, 8 week). Two ruminally cannulated Holstein bulls were used for in situ trial. Pathogen contamination trial was performed by comparing the mycotoxin contents in corns during storage periods. Dry matter disappearance rate in the rumen was about 3.0 to 44.1% higher (P<0.05) for USCW than IDCW, but was not difference between USCF and IDCF. With steam flaking of corn, dry matter degradability in the rumen was significantly (P<0.05) increased in corn from India, but was not affected in corn from USA. Aflatoxin content was very low level in corns from USA and steam flaked corns, but was higher than the tolerance limit of domestic aflatoxin content regulation when IDCW was stored over 6 week under STP. Ochratoxin content was low level in all treatments. From above results, it is reasonable that the corn imported from India might be flaked for enhance the ruminal DM degradability and safe from aflatoxin pathogen.

A Study on the Noise Attenuation Effects by Types of Forest Tree Belt (수림대(樹林帶)에 따른 소음감살효과(騷音減殺效果)에 관한 연구(硏究))

  • Lee, Ju-Hyoung;Kang, Gun-Uh
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.113-123
    • /
    • 2001
  • The main purpose of this study was to provide information on attenuation effects in forest tree belt of pine stand and oak stand. The relationships between DBH, tree height, clear length, crown area and number of trees and also between distance from noise origin, landslope etc. were analysed by correlation and multiple regression. The results obtained were as follows : 1. There was no difference between pine stand and oak stand in effecting noise attenuation. 2. The noise pressure was highly correlated with all of seven elements tested and both DBH and distance from noise origin have higher r-values than the others. For the pine stand, it was 0.9133 in DBH and 0.9630 in the distance and for the oak stand, 0.9296 in DBH and 0.9565 in the distance. 3. The optimum regression equation for pine stand and oak stand were made by combination of two variables (DBH and distance). The table of noise attenuation was made by optimum regression equation. In the case of pine stand, the attenuation ratio was 29% at 5m, 31.6~32.6% at 10m, 38.3~39.8% at 20m and 45.2~46.6% at 30m. And case of oak stand, the attenuation ratio was 29% at 5m, 31.6~34.2% at 10m, 38.6~41.4% at 20m and 45~47.2% at 30m. 4. As the noise pressure limit at the Urban housing area according to environmental laws is under 55dB, it is suggested by the table of noise attenuation that the distance, and DBH for the pine and oak stand are over 20m, 400cm and 30-35 trees, respectively.

  • PDF

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.

A Study on the Full-scale Soil Washing Process Improved by Multi-stage Continuous Desorption and Agitational Desorption Techniques to Remediate Petroleum-contaminated Soils (현장규모의 유류오염토양 세척공법에 다단연속탈착 및 교반탈착기법을 이용한 세척공정 성능향상에 관한 연구)

  • Seo, Yong-Sik;Choi, Sang-Il;Jang, Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.81-87
    • /
    • 2008
  • In accompany with the transfer of US army bases, recent surveys reported serious contamination of soils by the release of petroleum from storage facilities and heavy metals accumulated in rifle-ranges. These problems have made an increased concerns of cleanup technology for contaminated soils. In this study, a full-scale soil washing process improved by multistage continuous desorption and agitational desorption techniques was examined for petroleum-contaminated soils obtained from three different remedial sites that contained 29.3, 16.6, and 7.8% of silt and clay, respectively. The initial concentrations of total petroleum hydrocarbon (TPH) were 5,183, 2,560, and 4,860 mg/kg for each soil. Pure water was applied to operate washing process, in which water used for washing process was recycled 100% for over 6 months. The results of full-scale washing tests showed that the TPH concentrations for soils (> 3.0 mm) were 50${\sim}$356 mg/kg (85.2${\sim}$98.2% removal rates), regardless of the contents of silt and clay from in A, B and C soil, when the soils were washed at 3.0 kg/$cm^2$ of injection pressure with the method of wet particle separation. Based on the initial TPH concentration, the TPH removal rates for each site were 85.2, 98.2 and 89.9%. For soils in the range of 3.0${\sim}$0.075 mm, the application of first-stage desorption technique as a physical method resulted 834, 1,110, and 1,460 mg/kg of TPH concentrations for each soil, also additional multi-stage continuous desorption reduced the TPH concentration to 330, 385, and 245 mg/kg that were equivalent to 92.4, 90.6, and 90.1% removal rates, respectively. The result of multi-stage continuous desorption for fine soil (0.075${\sim}$0.053 mm) were 791, 885, and 1,560 mg/kg, and additional agitation desorption showed 428, 440, and, 358 mg/kg of TPH concentrations. Compared with initial concentration, the removal rates were 92.0, 93.9 and 92.9%, respectively. These results implied we could apply strategic process of soil washing for varies types of contaminated soils to meet the regulatory limit of TPH.

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

Studies on Raw Silk Cohesion for Promotion (생사의 포합향상에 관한 연구)

  • 최병희;김병호;원성희
    • Journal of Sericultural and Entomological Science
    • /
    • v.15 no.1
    • /
    • pp.37-48
    • /
    • 1973
  • The purpose of this studies is to improve the cohesion of raw silk through various analyses on cocoon drying, cooking, reeling, re-reeling, and on the properties of water. Also we investigated the correlation between silk testing items which we have reached to the following results. 1. Drying of cocoon When cocoons were slowly dried with 100$^{\circ}C$, the results of cohesion became much better. On the other hand, the results were considerably decreased in case the temperature with 115$^{\circ}C$. 2. Cooking of cocoon In case of the cooking of cocoon, we found that the result of cohesion was best with incomplete cooking, that of the control was next, while in over cooking, the results were very low. Also the results of cohesion were much better when using the method of over cooking with sericin arrestive agent than that of incomplete cooking with sericin agglutinating agent. 3. Reeling of cocoon A) When the temperature of reeling bath was 25-45$^{\circ}C$, the results of cohesion test were much better, but at the temperature below 25$^{\circ}C$ or above 45$^{\circ}C$, the results became worse. B) With out the process of croissieur, the results of cohesion were too bad, but in case of croissieur more than 1cm, cohesion became better rapidly. Further more, we understood that the results of cohesion were improving slightly with longer length of croissieur. C) When the velocity of reeling was increased, the results of cohesion also improved. The best results were shown when reeling velocity was 180-220 r.p.m. But when the velocity was increased more than 220 r.p.m., the results of cohesion got worse more or less. D) When the temperature of the drying pipe in reeling machine was raised, the results of cohesion also showed a tendency to improve. 4. Re-reeling A) We could net reach a conclusion as to have correlation between the number of dipping repeat in vacuum tank and the results of cohesion before re-reeling process. B) When we used Seracol 500 as an agglutination protective agent with l/1000 to l/2000 of water, the results of cohesion test were better. C) When we used Pearl-lite as an agglutination protective agent with 1/1000 to 1/2000 of water, the results of cohesion were considerably better. D) We gained tile best results when used Cohesion Improving Chemical, A-80, with 500-1500 times diluted. 1) Results of cohesion was improved when humidity was low or temperature was high in the rereeling machine. 5. Filature water A) The water pH near the isoelectric point of protein showed the best cohesion, but the farther water pH, the worser results were obtained. B) With the increasing of M-alkalinity in filature water, the results of cohesion were worse. Above all, we understood the tendency of the results of cohesion get worse when the M-alkalinity is increased above 200 ppm. C) By increasing the total hardness of the filature water, it improved the results of cohesion. Especially, when the total hardness was above 300ppm, the results were extremely high. 6. Effects combination of each results A) The result of effects combination in filature processes with the obtained best conditions was distinctively improved. But the results could not reach in mathematicaly double effect. When reelied under worse conditions, the results of cohesion test were too bad. There was "effect limit" for the promotion. B) Generally the results of cohesion were bad when the filature conditions(the temperature, pressure and the properties of water, etc) are processed as sericin loss to be high. On the other hand, the results were very good when lower sericin loss was controlled in filature conditions. C) When filature conditions such as reeling velocity and croissieur length provide pysical cohesion ability and when raw silk dry fast during reeling and re-reeling, we found the result of cohesion was better. 7. Correlation of silk testing items. A) A negative correlation exists between the results of cohesion test and cleanness defect. Another word, the result of cohesion test was found to be worse as cleanness defect increased. B) In cleanness, cohesion has negative correlation against the number of slugs, but we could not find any correlation against long loops, loose ends. C) Cohesion has negative correlation against average neatness and low neatness defect. The better the results of neatness respectively, the better the results of cohesion found. D) There is no correlation between tenacity and the results of cohesion test, but there was high positive correlation between the results of elongation and those of cohesion test. The more elongation, the better the results of cohesion was found.

  • PDF

A Study on Characteristics of Airborne Asbestos Concentrations at Demolition Sites and Surrounding Areas of Asbestos Containing Buildings in Seoul (서울시내 건축물 석면해체·제거 사업장 및 주변에서의 공기 중 석면농도 특성에 관한 연구)

  • Lee, Jinhyo;Lee, Suhyun;Kim, Jeongyeun;Kim, Jihui;Chung, Sooknye;Kim, Jina;Kim, Iksoo;Eo, Soomi;Jung, Kweon;Lee, Jinsook;Koo, Jayong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.434-441
    • /
    • 2014
  • This study is purposed to measure airborne asbestos concentrations at demolition sites and surrounding areas of asbestos containing buildings in Seoul and examine whether the measurement results correspond with allowable exhaust standard for asbestos of the Asbestos Safety Control Act. The airborne asbestos concentrations for 37 sites were below the detection limit ($7fiber/mm^2$) in 101 (35%) out of 288 samples. The whole average airborne asbestos concentration in 37 sites was $0.003{\pm}0.002f/cc$(max 0.0013 f/cc) and almost the whole airborne asbestos concentrations were satisfied with allowable exhaust standard for asbestos, 0.01 f/cc, of the Asbestos Safety Control Act. So possibility of asbestos exposure is not yet a major concern at current levels for sites demolished of asbestos containing buildings in Seoul. Looking at each sampling point, the average airborne asbestos concentrations in boundary line of site, entrance of sanitation, around the workplace (in), around the workplace (out), negative pressure units, storage area for waste, outlet for waste and residential area of residents were respectively $0.002{\pm}0.002f/cc$, $0.004{\pm}0.002f/cc$, $0.004{\pm}0.002f/cc$, $0.004{\pm}0.002f/cc$, $0.004{\pm}0.002f/cc$, $0.005{\pm}0.004f/cc$, $0.005{\pm}0.003f/cc$ and $0.003{\pm}0.002f/cc$. As a result, all sampling points of study were satisfied with allowable exhaust standard for asbestos, 0.01 f/cc, of the Asbestos Safety Control Act.

Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator (TOUGH2-MP/FLAC3D를 이용한 한국형 기준 처분시스템에서의 열-수리-역학적 복합거동 특성 평가)

  • Lee, Changsoo;Cho, Won-Jin;Lee, Jaewon;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.183-202
    • /
    • 2019
  • For design and performance assessment of a high-level radioactive waste (HLW) disposal system, it is necessary to understand the characteristics of coupled thermo-hydro-mechanical (THM) behavior. However, in previous studies for the Korean Reference HLW Disposal System (KRS), thermal analysis was performed to determine the spacing of disposal tunnels and interval of disposition holes without consideration of the coupled THM behavior. Therefore, in this study, TOUGH2-MP/FLAC3D is used to conduct THM modeling for performance assessment of the Korean Reference HLW Disposal System (KRS). The peak temperature remains below the temperature limit of $100^{\circ}C$ for the whole period. A rapid rise of temperature caused by decay heat occurs in the early years, and then temperature begins to decrease as decay heat from the waste decreases. The peak temperature at the bentonite buffer is around $96.2^{\circ}C$ after about 3 years, and peak temperature at the rockmass is $68.2^{\circ}C$ after about 17 years. Saturation of the bentonite block near the canister decreases in the early stage, because water evaporation occurs owing to temperature increase. Then, saturation of the bentonite buffer and backfill increases because of water intake from the rockmass, and bentonite buffer and backfill are fully saturated after about 266 years. The stress is calculated to investigate the effect of thermal stress and swelling pressure on the mechanical behavior of the rockmass. The calculated stress is compared to a spalling criterion and the Mohr-Coulumb criterion for investigation of potential failure. The stress at the rockmass remains below the spalling strength and Mohr-Coulumb criterion for the whole period. The methodology of using the TOUGH2-MP/FLAC3D simulator can be applied to predict the long-term behavior of the KRS under various conditions; these methods will be useful for the design and performance assessment of alternative concepts such as multi-layer and multi-canister concepts for geological spent fuel repositories.