• Title/Summary/Keyword: limit function

Search Result 1,142, Processing Time 0.034 seconds

An Approximate Solution for the Local Buckling Coefficient of Pultruded I-Shape Compression Members (펄트루젼 I형 단면 압축재의 국부좌굴계수 계산을 위한 근사식의 개발)

  • Joo H. J.;Jung J. H.;Lee S.;Yoon S. J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.223-227
    • /
    • 2004
  • The pultruded structural shapes are usually composed of thin-walled plate elements. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling or the global buckling. Therefore, the stability limit state must be checked to design pultruded columns. In this research, the local buckling analysis of pultruded I-shape column was conducted for various composite materials using the closed-form solution. To establish the design guidelines for the local buckling of pultruded I-shape compression members, the simplified form of equation to find the local buckling coefficient of pultruded I-shape column was proposed as a function of mechanical properties and the width ratio of plate components using the results obtainde by the closed-form solution. In order to verify the validity of proposed solution, the results obtained by the proposed approximate solution were compared with those of the closed-form solution and the experimental results.

  • PDF

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

A new Approach to Moving Obstacle Avoidance Problem of a Mobile Robot

  • 고낙용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.9-21
    • /
    • 1998
  • This paper a new solution approach to moving obstacle avoidance problem of a mobile robot. A new concept avoidability measure (AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function (VDF), is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF ,an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

Stochastic Analysis of Self-sustained Oscillation Loop for a Resonant Accelerometer

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.574-578
    • /
    • 2004
  • In this paper, a nonlinear feedback system is analyzed for a surface micromachined resonant accelerometer. For this, a brief illustration of the plant dynamics is given. In the analysis, the periodic signal in the nonlinear feedback loop is obtained by the limit cycle point, which is best approximated via the describing function method. Considering the characteristic feature of plant dynamics, a simple phase shifted relay with finite slope is designed for the nonlinearity implementation. With a describing function for random plus sinusoidal input, we analyzed the effect of a white Gaussian noise on oscillation frequency. Finally, simulation and experimental result is given.

  • PDF

An Adaptive Learning Rate with Limited Error Signals for Training of Multilayer Perceptrons

  • Oh, Sang-Hoon;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.22 no.3
    • /
    • pp.10-18
    • /
    • 2000
  • Although an n-th order cross-entropy (nCE) error function resolves the incorrect saturation problem of conventional error backpropagation (EBP) algorithm, performance of multilayer perceptrons (MLPs) trained using the nCE function depends heavily on the order of nCE. In this paper, we propose an adaptive learning rate to markedly reduce the sensitivity of MLP performance to the order of nCE. Additionally, we propose to limit error signal values at out-put nodes for stable learning with the adaptive learning rate. Through simulations of handwritten digit recognition and isolated-word recognition tasks, it was verified that the proposed method successfully reduced the performance dependency of MLPs on the nCE order while maintaining advantages of the nCE function.

  • PDF

Selection of Optimal Supporting Position to Maximize Natural Frequency of the Structure Using Frequency Response Function (주파수 응답함수를 이용한 구조물 고유진동수 극대화를 위한 최적 지지점 선정)

  • 박용화;정완섭;박윤식
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.648-654
    • /
    • 2000
  • A procedure to determine the realizable optimal positions of rigid supports is suggested to get a maximum fundamental natural frequency. a measured frequency response function based substructure-coupling technique is used to model the supported structure. The optimization procedure carries out the eigenvalue sensitivity analysis with respect to the stiffness of supports. As a result of such stiffness optimization, the optimal rigid-support positions are shown to be determined by choosing the position of the largest stiffness. The optimally determined support conditions are verified to satisfy the eigenvalue limit theorem. To demonstrate the effectiveness of the proposed method, the optimal support positions of a plate model are investigated. Experimental results indicate that the proposed method can effectively find out the optimal support conditions of the structure just based on the measured frequency response functions without any use of numerical model of the structure.

  • PDF

Application of Probability Density Function in SFEM and Corresponding Limit Value (추계론적 유한요소해석에서의 확률밀도함수 사용과 수렴치)

  • Noh Hyuk-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.857-864
    • /
    • 2006
  • Due to the difficulties in numerical generation of random fields that satisfy not only the probabilistic distribution but the spectral characteristics as well. it is relatively hard to find an exact response variability of a structural response with a specific random field which has its features in the spatial and spectral domains. In this study. focusing on the fact that the random field assumes a constant over the domain under consideration when the correlation distance tends to infinity, a semi-theoretical solution of response variability is proposed for in-plane and plate bending structures. In this procedure, the probability density function is used directly resulting in a semi-exact solution for the random field in the state of random variable. It is particularly noteworthy that the proposed methodology provides response variability for virtually any type of probability density functions.

  • PDF

Electron Spin Transition Line-width of Mn-doped Wurtzite GaN Film for the Quantum Limit

  • Park, Jung-Il;Lee, Hyeong-Rag;Lee, Su-Ho;Hyun, Dong-Geul
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • Starting with Kubo's formula and using the projection operator technique introduced by Kawabata, EPR lineprofile function for a $Mn^{2+}$-doped wurtzite structure GaN semiconductor was derived as a function of temperature at a frequency of 9.49 GHz (X-band) in the presence of external electromagnetic field. The line-width is barely affected in the low-temperature region because there is no correlation between the resonance fields and the distribution function. At higher temperature the line-width increases with increasing temperature due to the interaction of electrons with acoustic phonons. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition systems.

APPROXIMATE CONFIDENCE LIMITS OF THE RELIABILITY PERFORMANCES FOR A COLD STANDBY SERIES SYSTEM

  • SHI YIMIN;SRI XIAOLIN;XU YONG
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.439-445
    • /
    • 2005
  • This paper is to investigate the approximate confidence limits of the reliability performances (such as failure rate, reliability function and average life) for a cold standby series system. The Bayesian approximate upper confidence limit of failure rate is obtained firstly, and next Bayesian approximate lower confidence limits for reliability function and average life are presented. The expressions for calculating Bayesian lower confidence limits of the reliability function and average life are also obtained, and an illustrative example is examined numerically by means of the Monte-Carlo simulation. Finally, the accuracy of confidence limits is discussed.