DOI QR코드

DOI QR Code

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam (Department of Civil and Geomechanics Engineering, Arak University of Technology) ;
  • Mohammad Saeid, Farajzadeh (School of Civil Engineering, Iran University of Science and Technology) ;
  • Mohsenali, Shayanfar (School of Civil Engineering, Iran University of Science and Technology)
  • Received : 2022.02.08
  • Accepted : 2022.12.30
  • Published : 2023.02.10

Abstract

Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

Keywords

References

  1. Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliability-based design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., 52(6), 1099-1120. https://doi.org/10.12989/sem.2014.52.6.1099. 
  2. Balomenos, G.P. and Pandey, M.D. (2016), "Finite element reliability and sensitivity analysis of structures using the multiplicative dimensional reduction method", Struct. Infrastr. Eng., 12(12), 1553-1565. https://doi.org/10.1080/15732479.2016.1151446. 
  3. Choi, S.K., Canfield, R.A. and Grandhi, R.V. (2007), Reliability-Based Structural Optimization, Springer, London.
  4. Der Kiureghian, A. and Liu, P.L. (1986), "Structural reliability under incomplete probability information", J. Eng. Mech., 112(1), 85-104. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(85). 
  5. Der Kiureghian, A., Haukaas, T. and Fujimura, K. (2006), "Structural reliability software at the University of California, Berkeley", Struct. Saf., 28(1-2), 44-67. https://doi.org/10.1016/j.strusafe.2005.03.002. 
  6. Dizangian, B. and Ghasemi, M.R. (2016), "A fast decoupled reliability-based design optimization of structures using B-spline interpolation curves", J. Brazil. Soc. Mech. Sci. Eng., 38(6), 1817-1829. https://doi.org/10.1007/s40430-015-0423-4. 
  7. Ghasemi, M.R., Camp, C.V. and Dizangian, B. (2019), "Novel decoupled framework for reliability-based design optimization of structures using a robust shifting technique", Front. Struct. Civil Eng., 13(4), 800-820. https://doi.org/10.1007/s11709-019-0517-7. 
  8. Haukaas, T. (2003), "Finite element reliability and sensitivity methods for performance-based engineering", University of California, Berkeley, USA. 
  9. Haukaas, T. and Der Kiureghian, A. (2007), "Methods and object-oriented software for FE reliability and sensitivity analysis with application to a bridge structure", J. Comput. Civil Eng., 21(3) 151-163. https://doi.org/10.1061/(ASCE)0887-3801(2007)21:3(151). 
  10. Ho-Huu, V., Duong-Gia, D., Vo-Duy, T., Le-Duc, T. and Nguyen-Thoi, T. (2018), "An efficient combination of multi-objective evolutionary optimization and reliability analysis for reliability-based design optimization of truss structures", Exp. Syst. Appl., 102, 262-272. https://doi.org/10.1016/j.eswa.2018.02.040. 
  11. Ho-Huu, V., Nguyen-Thoi, T., Le-Anh, L. and Nguyen-Trang, T. (2016), "An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures", Adv. Eng. Softw., 92, 48-56. https://doi.org/10.1016/j.advengsoft.2015.11.001. 
  12. Kaveh, A., Aghakouchak, A.A. and Zakian, P. (2015), "Reduced record method for efficient time history dynamic analysis and optimal design", Earthq. Struct., 8(3), 639-663. https://doi.org/10.12989/eas.2015.8.3.639. 
  13. Khodam, A., Mesbahi, P., Shayanfar, M. and Ayyub, B.M. (2021), "Global decoupling for structural reliability-based optimal design using improved differential evolution and chaos control", ASCE-ASME J. Risk Uncert. Eng. Syst., Part A: Civil Eng., 7(1), 04020052. https://doi.org/10.1061/AJRUA6.0001097. 
  14. Lee, I., Choi, K.K. and Gorsich, D. (2010), "Sensitivity analyses of FORM-based and DRM-based performance measure approach (PMA) for reliability-based design optimization (RBDO)", Int. J. Numer. Meth. Eng., 82(1), 26-46. https://doi.org/10.1002/nme.2752. 
  15. Lee, J.O., Yang, Y.S. and Ruy, W.S. (2002), "A comparative study on reliability-index and target-performance-based probabilistic structural design optimization", Comput. Struct., 80(3-4), 257-269. https://doi.org/10.1016/S0045-7949(02)00006-8. 
  16. Li, F., Wu, T., Hu, M. and Dong, J. (2010), "An accurate penalty-based approach for reliability-based design optimization", Res. Eng. Des., 21(2), 87-98. https://doi.org/10.1007/s00163-009-0083-4. 
  17. Luo, C., Keshtegar, B., Zhu, S.P. and Niu, X. (2022b), "EMCSSVR: Hybrid efficient and accurate enhanced simulation approach coupled with adaptive SVR for structural reliability analysis", Comput. Meth. Appl. Mech. Eng., 400, 115499. https://doi.org/10.1016/j.cma.2022.115499. 
  18. Luo, C., Keshtegar, B., Zhu, S.P., Taylan, O. and Niu, X.P. (2022a), "Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis", Comput. Meth. Appl. Mech. Eng., 388, 114218. https://doi.org/10.1016/j.cma.2021.114218. 
  19. Luo, X. and Grandhi, R.V. (1997), "Astros for reliability-based multidisciplinary structural analysis and optimization", Comput. Struct., 62(4), 737-745. https://doi.org/10.1016/S0045-7949(96)00234-9. 
  20. Mahdavi, S., Shaterzadeh, A.R. and Jafari, M. (2021), "Optimum design for thermal buckling of composite plates with semi triangular cutout using PSO algorithm", Struct. Eng. Mech., 80(1), 83-90. https://doi.org/10.12989/sem.2021.80.1.083. 
  21. McKenna, F., Fenves, G.L. and Scott, M.H. (2000), "Open system for earthquake engineering simulation", University of California, Berkeley, CA, USA. 
  22. Melchers, R.E. and Beck, A.T. (2018), Structural Reliability Analysis and Prediction, John Wiley & Sons. 
  23. Meng, D., Yang, S., He, C., Wang, H., Lv, Z., Guo, Y. and Nie, P. (2022), "Multidisciplinary design optimization of engineering systems under uncertainty: A review", Int. J. Struct. Integr., 13(4), 565-593. https://doi.org/10.1108/IJSI-05-2022-0076. 
  24. Meng, D., Yang, S., Zhang, Y. and Zhu, S.P. (2019), "Structural reliability analysis and uncertainties-based collaborative design and optimization of turbine blades using surrogate model", Fatig. Fract. Eng. Mater. Struct., 42(6), 1219-1227. https://doi.org/10.1111/ffe.12906. 
  25. Nowak, A.S. and Collins, K.R. (2000), Reliability of Structures, McGraw-Hill, New York. 
  26. Okasha, N.M. (2016), "An improved weighted average simulation approach for solving reliability-based analysis and design optimization problems", Struct. Saf., 60, 47-55. https://doi.org/10.1016/j.strusafe.2016.01.005. 
  27. Patelli, E., Panayirci, H.M., Broggi, M., Goller, B., Beaurepaire, P., Pradlwarter, H.J. and Schueller, G.I. (2012), "General purpose software for efficient uncertainty management of large finite element models", Finite Elem. Anal. Des., 51, 31-48. https://doi.org/10.1016/j.finel.2011.11.003. 
  28. Pettit, C.L. and Grandhi, R.V. (2000), "Multidisciplinary optimization of aerospace structures with high reliability", 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, PMC. 
  29. Rashki, M., Miri, M. and Moghaddam, M.A. (2012), "A new efficient simulation method to approximate the probability of failure and most probable point", Struct. Saf., 39, 22-29. https://doi.org/10.1016/j.strusafe.2012.06.003. 
  30. Safaeian Hamzehkolaei, N., Miri, M. and Rashki, M. (2016), "An enhanced simulation-based design method coupled with metaheuristic search algorithm for accurate reliability-based design optimization", Eng. Comput., 32(3), 477-495. https://doi.org/10.1007/s00366-015-0427-9. 
  31. Shayanfar, M., Abbasnia, R. and Khodam, A. (2014), "Development of a GA-based method for reliability-based optimization of structures with discrete and continuous design variables using OpenSees and Tcl", Finite Elem. Anal. Des., 90, 61-73. https://doi.org/10.1016/j.finel.2014.06.010. 
  32. Wu, Y.T., Shin, Y., Sues, R. and Cesare, M. (2001), "Safety-factor based approach for probability-based design optimization", 19th AIAA Applied Aerodynamics Conference, 1522. 
  33. Xiaopeng, L., Zhenzhou, L. and Xin, X. (2014), "Discussion of paper: "A new efficient simulation method to approximate the probability of failure and most probable point": M. Rashki, M. Miri and MA Moghaddam, Structural Safety 39 (2012) 22-29", Struct. Saf., 46, 13-14. https://doi.org/10.1016/j.strusafe.2013.08.003. 
  34. Yang, X.S. (2010), Nature-inspired Metaheuristic Algorithms, Luniver Press. 
  35. Youn, B.D., Choi, K.K. and Du, L. (2005), "Adaptive probability analysis using an enhanced hybrid mean value method", Struct. Multidisc. Optim., 29(2), 134-148. https://doi.org/10.1007/s00158-004-0452-6. 
  36. Youn, B.D., Choi, K.K. and Du, L. (2005), "Enriched performance measure approach for reliability-based design optimization", AIAA J., 43(4), 874-884. https://doi.org/10.2514/1.6648. 
  37. Zakian, P. (2019), "Meta-heuristic design optimization of steel moment resisting frames subjected to natural frequency constraints", Adv. Eng. Softw., 135, 102686. https://doi.org/10.1016/j.advengsoft.2019.102686. 
  38. Zhu, S.P., Keshtegar, B., Bagheri, M., Hao, P. and Trung, N.T. (2020), "Novel hybrid robust method for uncertain reliability analysis using finite conjugate map", Comput. Meth. Appl. Mech. Eng., 371, 113309. https://doi.org/10.1016/j.cma.2020.113309. 
  39. Zhu, S.P., Keshtegar, B., Trung, N.T., Yaseen, Z.M. and Bui, D.T. (2021), "Reliability-based structural design optimization: Hybridized conjugate mean value approach", Eng. Comput., 37(1), 381-394. https://doi.org/10.1007/s00366-019-00829-7.