• Title/Summary/Keyword: limit analysis method

Search Result 2,370, Processing Time 0.037 seconds

Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis (사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석)

  • Baek, Yong;Bae, Gyu-Jin;Kwon, O-Il;Jang, Su-Ho;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF

Reliability Analysis of laminated Composite Panel using Response Surface Method (반응면 기법을 이용한 적층복합재료판의 신뢰성해석)

  • 방제성;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.187-190
    • /
    • 2001
  • Response surface method is applied to evaluate the reliability of laminated composite panels. Since the linear and nonlinear first-ply failure load are computed using deterministic finite element analysis, new probabilistic finite element analysis is not necessary. Tsai-Wu criterion is used to construct the limit state suface. Material properties, layer thickness and lamina strengths of laminated composite panel are treated as random design variables. feasibility and accuracy of current method is validated using Monte-Carlo method Which perform thousand times of finite element analysis directly.

  • PDF

Serviceability Limit State and Response Modification Factors (기능수행수준과 응답수정계수)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • While the Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides design procedures for the No Collapse Requirement, requirements for the Serviceability Limit State are not clearly provided. The basic design method to meet the No Collapse Requirement is the spectrum analysis method using response modification factors and the Serviceability Limit State is determined by both the importance factor and the response modification factor applied in the design procedure. The importance factor can be simply applied according to the bridge importance category, however, in moderate/low seismic regions the application of the response modification factor may bring different result according to design conditions. In this study, for a typical bridge in the moderate/low seismic regions, determination procedures for the Serviceability Limit State are reviewed by carrying out earthquake resistant design and supplementary provisions for the Earthquake Resistant Design Part are identified based on the study results.

Slope Stability Analysis Considering Seepage Conditions by FEM Using Strength Reduction Technique (강도 감소법에 의한 지하수위를 고려한 FEM 사면안정해석)

  • 김영민
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.97-102
    • /
    • 2004
  • In this paper, a finite element based method far determining factor of safety of slopes which has certain advantages over conventional limit equilibrium methods is described. Particularly, the slope failure behaviour considering different seepage conditions is produced by finite element method using strength reduction technique. It is shown that both the failure mechanism and the safety factor that are analyzed by the FEM using strength reduction technique are an effective means of slope stability analysis. And the stability of a slope with rising water table and rapid drawdown are analyzed and the results are compared with the simplified Bishop Method of the Limit Equilibrium Methods.

A method of calculating strain state and forming severity analysis for axisymmetric sheet formed parts. (축대칭 프레스가공 제품의 변형률 예측기술과 변형여유 해석에의 적용)

  • 박기철;남재복;최원섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.173-184
    • /
    • 1994
  • A method of obtaining deformation severity of axisymmetric shape deep-drawn products was developed. Strain states of products produced by single or multi-stage drawing were predicted by using finite element analysis. This method used minimization of potential energy between the known shape of final product and the unknown in initial blank. And that was done numerically by nonlinear finite element method. Deformation theory of plasticity was used for practical purposes. From predicted strain states of drawn parts, deformation severity was found by using forming limit diagrams.

Bifurcation Analysis of Nonlinear Oscillations of Suspended Cables with 2-to-1 Internal Resonance (2:1 내부공진을 갖는 케이블의 비선형 진동의 분기해석)

  • 장서일
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1144-1149
    • /
    • 1998
  • A two degree-of-freedom model of suspended cables is studied for forced resonant response. The method of averaging is used to obtain first-order approximations to the response of the system. A bifurcation analysis of the averaged system is performed in the case of 2-to-1 internal resonance. Nonlinear coupled-mode motions are found to bifurcate from single-mode responses and further bifurcate to limit cycle motions via Hopf bifurcations. The limit cycle solutions undergo period doubling bifurcations to chaos.

  • PDF

Diagnosis of Thickness Quality Using Multivariate Statistical Analysis in Hot Finishing Mill

  • Kim, Heung-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.3-116
    • /
    • 2001
  • A diagnosis methodology for thickness quality in hot finishing mill is proposed based on multivariate statistical analysis. The thickness of hot strip is a key quality factor that is measured by x-ray thickness gauge. Currently, the thickness quality is guaranteed by upper and lower limit of thickness deviation from target thickness. But if any over-limit is occurred, there is no in-line method to identify the causes. In this paper, many parameters are extracted from the thickness deviation signal such as mean deviation(top, middle, tail), rms deviation(top, middle, tail) and peak deviation(top, middle, tail) as time domain parameters ...

  • PDF

Finite Element Analysis of the Gangway of a Korea High Speed Train (한국형 고속전철 관절장치의 구조해석)

  • 노규석;이상록;강재윤
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.222-229
    • /
    • 2001
  • This paper aims to verify the static strength of a KHST gangway structure including fixed ring and carrying ring according to tile load cases in the defined specification. The structure has been analyzed by the finite element method. Calculation carried out in tile fields of linearity and small deformation. The admissible limit is tile yield strength for the available materials. The analysis results show that Von-Mises stress at some locations of the structure is a little beyond the admissible limit. These results are successfully reflected on the adjusted design.

  • PDF

Handling Deflection Limit in Open-Loop-Onset-Point PIO Analysis (Open-Loop-Onset-Point PIO 해석의 변위한계)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • A new treatment is proposed to handle a deflection limit in the open-loop-onset-point (OLOP), which is commonly used in the prediction of pilot in-the-loop oscillation (PIO) due to a rate saturation. The new approach is motivated by the frequency response of a stand-alone actuator in that, unlike the suggestion by the original OLOP procedure, the rate limit onset is not delayed to a higher frequency by a deflection limit. Indeed, if a feedback control loop is closed, the rate limit onset can be shifted to a lower frequency since the controller tends to react with larger commands when deflection limited. The amplitude of the command at this onset frequency is combined with the deflection limit to estimate the associated gain reduction in the open-loop-onset-point in the final step of the OLOP process. The comparison of the new approach with the previous method reveals that an inaccurate optimism which can occur in the previous method is corrected by the proposed treatment.

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.