• 제목/요약/키워드: limestone origin

Search Result 38, Processing Time 0.02 seconds

Conservation Methods and Vascular plants of Oriental Thuja Community in Dodong, Daegu (도동 측백나무군락지의 식물상 및 보전방안)

  • Choi, Byoung-Ki;Lim, Jeong-Cheol;Lee, Chang-Woo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.3
    • /
    • pp.72-83
    • /
    • 2015
  • A plant diversity, which consists of indigenous plant community with Orientla thuja community (Natural monument no. 1) in Dodong, Daegu, is identified and analyzed as ecological characteristic to consider worth plants and vegetation resource of the region. The vascular plants of Thuja orientalis community were listed as 219 taxa (3.7% of all 4,881 taxa of Korean vascular plants); 67 families, 147 genera, 199 species, 16 varieties, and 4 forms. Vulnerable species (VU) and least concerned species (LC) were recorded based on IUCN standard; Koelretueria paniculata (VU), Thuja orientalis (LC), and Exochorda serratifolia (LC). Although the study site is a non-limestone area, a total of 15 taxa of calciphilous plants were identified; Cheilanthes argentea, Hypodematium glandulosopilosum, Asplenium retamuraria, Thuja orientalis, Spiraea blumei, Smilax sieboldii, etc. A total of 4 taxa endemic plants were identified; Prunus mandshurica for. barbinervis, Lespedeza maximowiczii var. tomentella, Forythia koreana (artificial origin), and Veronica pyrethrina. Among the list, 8 taxa of naturalized plants were identified; Fallopia dentatoalalta, Rumex crispus, Nasturtium officinale, Bidens frondosa, Erigeron annuus etc. Naturalization rate (NR) was 3.6%, of all 219 taxa of vascular plants and urbanization index (UI) was 2.2% of all 321 taxa of naturalized plants. Thuja orientalis occupies a lot of indigenous landscape in this study area which is the southern-limited part of a natural distribution where it can survive. The T. orientalis community, where indigenous plants have formed a characterful species composition based on habitat, has been confirmed as a worth national vegetation resource in an indigeous flora. It has been considered of plans for persistent conservation.

Interpretation of Origin and Methanogenic Pathways of Coalbed Gases from the Asem-Asem Basin, Southeast Kalimantan, Indonesia (인도네시아 칼리만탄 남동측에 위치하는 아셈-아셈분지 석탄층 가스의 기원과 메탄생성경로 해석)

  • Chun, Jong-Hwa;Hwang, In Gul;Lee, Wonsuk;Lee, Taehun;Kim, Yuri
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.261-271
    • /
    • 2022
  • Six gas samples were collected from coal and coaly shale from core AA-1, which was acquired from the Asem-Asem Basin, southeast Kalimantan, Indonesia. These coalbed gas samples were analyzed for the molecular composition, carbon isotope (δ13CCH4, δ13CC2, and δ13CCO2), hydrogen isotope (δDCH4), hydrocarbon index (CHC), and carbon dioxide-methane index (CDMI) to document their origin and methanogenic pathways. Core AA-1 successively consists of lower clastic sedimentary rocks (Sedimentary Unit-1, SU-1) containing coal and coaly shale, and upper limestone (Sedimentary Unit-2, SU-2), unconformably underlain by serpentinized basement interpreted as part of the Cretaceous Meratus subduction complex (MSC). The coal and coaly shale (SU-1) were deposited in a marshes nearby a small-scale river. Compositions of coalbed gases show that methane ranges from 87.35 to 95.29% and ethane ranges from 3.65 to 9.97%. Carbon isotope of coalbed methane (δ13CCH4) ranges from -60.3 to -58.8‰, while hydrogen isotope (δDCH4) ranges from -252.9 to -252.1‰. Carbon isotope of coalbed ethane (δ13CC2) ranges from -32.8 to -31.2‰, carbon isotope of coalbed carbon dioxide (δ13CCO2) ranges from -8.6 to -6.2‰. The coalbed CO2 is interpreted to be an abiogenic origin based on a combination of δ13CCO2 and CDMI and could have been transported from underlying CO2 bearing MSC through faults. The methanogenic pathways of coalbed gases are interpreted to have originated from primary methyl-type fermentation and mixed with CO2 reduction, affecting thermogenic non-marine coal-type gases based on analyses of isotopic ratios and various indexes.

Origin of Massive Amphibolitic Rocks in Imgye Area, Korea (임계지역(臨溪地域)에 분포(分布)하는 각섬석질암(角閃石質岩)의 성인(成因))

  • So, Chil-Sup;Kim, Youn-Ki;Chi, Se-Jung;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.14 no.4
    • /
    • pp.183-191
    • /
    • 1981
  • Major and trace elements analyses are presented for 13 amphibolites by wet chemical and emission spectroscopic methods. These chemical data were compared with limestone and quartzite closely associated with the amphibolites. The chemical similarity of the amphibolites studied to the basic igneous rock and low oxidation ratios (<30) are indicative of the igneous intrusive, especially middle stage differentiates. Petrographic and stratigraphic study of the rocks suggest the more igneous features rather than those of sedimentary progenitors.

  • PDF

Origin of the Magnetite-Bearing Amphibolites from the Yangyang Iron Mine, Korea: New Geochemical Data and Interpretation (양양(襄陽) 철광상(鐵鑛床)의 철(鐵)을 부존(賦存)하는 각섬석질암(角閃石質岩)의 성인(成因))

  • So, Chil-Sup;Kim, Sang-Myeong;Son, Dae-Seong
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.175-182
    • /
    • 1975
  • The chemical similarity of the magnetite-bearing amphiboltes of the Yangyang iron mine to mixtures of sedimentary pelites and limestone or dolomite and to the Gyeonggi para-amphibolites (So, 1974) is consistently indicated by all the chemical data of the rocks. Eight amphibolite samples were each analyzed for 18 elements, by wet chemical and emission spectroscopic methods, and these chemical data were compared with the para-amphibolites from the Gyeonggi metamorphic complex. Petrography and oxidation ratios were also considered.

  • PDF

Skarn Mineralization Associated with the Imog Granite in Nokjeonri Area, Yeongwol (영월 녹전리 일대 이목화강암과 관련된 스카른 광화작용)

  • Jeong, Jun-Yeong;Shin, Dongbok;Im, Heonkyung
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.215-232
    • /
    • 2020
  • The study area of Nokjeonri in Yeongwol belongs to the Taebaeksan Mineralized District. Ca and Mg skarn and related ore mineralization are developed in the Pungchon formation along the contact with the Imog granite. Ca skarn hosted in limestone mostly comprises garnet and pyroxene. Mg skarn developed in dolomite includes olivine and serpentine. Magnetite-hematite and pyrrhotite(±scheelite)-pyritegalena-sphalerite were mineralized during early and late stage, respectively. Garnet compositions are dominated by andradite series in proximal area and grossular series in distal area. Pyroxene compositions correspond to diopside series in majority. These compositional changes indicate that the fluids varied from oxidizing condition to reducing condition due to increased reaction with carbonated wall rocks as the fluids moved from the granite to a distal place. Fe2O3 and MgO concentrations of magnetite are higher in Mg skarn than those in Ca skarn, while FeO shows opposite trend. The Zn/Fe ratio of sphalerite increases with distance from the Imog granite. The δ34S values of sulfide minerals are similar to those of the Imog granite, indicating magmatic origin in ore sulfur. Mineralization was established in the order of skarn, oxide and sulfide minerals with decreasing temperature and oxygen fugacity and increasing sulfur fugacity.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Ore Minerals and Genetic Environments of the Seungryung Zn Deposit, Muzu, Korea (무주 승륭 아연광상의 광석광물과 생성환경)

  • Yeom, Taesun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • The geology of the Seungryung Zn deposit, located in the Muzu basin, consists of Precambrian leucocratic granitic gneiss, Cretaceous clastic rocks, pyroclastic rocks, and intrusive rocks. The deposit shows a weakly skarnized hydrothermal replacement ore developed along limestone bed in the gneiss. The mineralization can be divided into three stages: the early skarnization producing garnet and pyroxene, the main mineralization in the middle stage precipitating most metallic minerals such as magnetite, sphalerite, chalcopyrite, pyrrhotite, Pb-Ag-Bi-S system minerals, and the late stage for altered or low temperature minerals such as chlorite and marcasite. Pb-Ag-Bi-S system minerals include heyrovskite-eskimoite solid solution, lillianite-gustavite solid solution, and vikingite. Chalcopyrite diseases are quite common in sphalerite showing bead chains and dusting textures. The ${\delta}^{34}S$ values of sulfides minerals are concentrated within the narrow range of 3.4~4.1‰ for pyrite, 3.3~4.3‰ for sphalerite, 4.0~4.3‰ for chalcopyrite, and 2.8‰ for galena, suggesting that most sulfur is of igneous origin. Sulfur isotope geothermometry is calculated to be $346{\sim}431^{\circ}C$, implying that the mineralization occurred at relatively high temperature. FeS contents of sphalerite are relatively high in the range of 6.58~20.16 mole% (avg. 16.58 mole%) with the enrichment of Mn compared to Cd, similarly to representative skarn Pb-Zn deposits in South Korea. On the contrary, sphalerite from Au-Ag deposits in the Seolcheon mineralized zone around the Seungryung deposit is enriched in Cd, showing similar feature like representative epithermal Au-Ag deposits. This suggests that around the related igneous rocks, magnetite and sphalerite were produced at high temperature in the Seungryung deposit, and with decreasing temperature and compositional change of mineralizing fluids, Au-Ag mineralization proceeded in the Seolcheon mineralized zone.

Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan (괴산 성도 연-아연 광상의 산출광물과 생성환경)

  • Ahn, Seongyeol;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.325-340
    • /
    • 2017
  • The Seongdo Pb-Zn deposit, located in the northwestern part of the Ogcheon Metamorphic Belt, consists of skarn ore replacing limestone within the Hwajeonri Formation of Ogcheon Group and hydrothermal vein ore filling the fracture of host rock. Skarn minerals comprise mostly hedenbergitic pyroxene, garnet displaying oscillatory zonal texture composed of grossular and andradite, and a small amount of wollastonite, tremolite, and epidote, indicating reducing condition of formation. Ore minerals of skarn ore include sphalerite and galena with a small amount of pyrite, pyrrhotite, and chalcopyrite. In hydrothermal vein ore, arsenopyrite, sphalerite, chalcopyrite, and pyrite occur with a small amount of galena, native Bi, and stannite. Chemical compositions of sphalerite vary from 17.4 mole% FeS in average for dark grey sphalerite, 3.6 mole% for reddish brown sphalerite in skarn ore, and to 10.3 mole% FeS in hydrothermal vein ore. In comparison with representative metallic deposits in South Korea on the FeS-MnS-CdS diagram, skarn and hydrothermal vein ore plot close to the field of Pb-Zn deposits and Au-Ag deposits, respectively. Arsenic contents of arsenopyrite in hydrothermal vein ore decrease from 31.93~33.00 at.% in early stage to 29.58~30.21 at.% in middle stage, and their corresponding mineralizing temperature and sulfur fugacity are $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm$. and $330{\sim}364^{\circ}C$, <$10^{-8}atm$. respectively. Phase equilibrium temperatures calculated from Fe and Zn contents for coexisting sphalerite and stannite in hydrothermal vein are $236{\sim}254^{\circ}C$. Sulfur isotope compositions are 5.4~7.2‰ for skarn ore and 5.4~8.4‰ for hydrothermal vein ore, being similar or slightly higher to magmatic sulfur, suggesting that ore sulfur was mostly of magmatic origin with partial derivation from host rocks. However, much higher sulfur isotope equilibrium temperatures of $549^{\circ}C$$487^{\circ}C$, respectively for skarn ore and hydrothermal ore, than those estimated from phase equilibria imply that isotopic equilibrium has not been fully established.