Browse > Article
http://dx.doi.org/10.9719/EEG.2017.50.5.325

Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan  

Ahn, Seongyeol (Department of Geoenvironmental Sciences, Kongju National University)
Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
Publication Information
Economic and Environmental Geology / v.50, no.5, 2017 , pp. 325-340 More about this Journal
Abstract
The Seongdo Pb-Zn deposit, located in the northwestern part of the Ogcheon Metamorphic Belt, consists of skarn ore replacing limestone within the Hwajeonri Formation of Ogcheon Group and hydrothermal vein ore filling the fracture of host rock. Skarn minerals comprise mostly hedenbergitic pyroxene, garnet displaying oscillatory zonal texture composed of grossular and andradite, and a small amount of wollastonite, tremolite, and epidote, indicating reducing condition of formation. Ore minerals of skarn ore include sphalerite and galena with a small amount of pyrite, pyrrhotite, and chalcopyrite. In hydrothermal vein ore, arsenopyrite, sphalerite, chalcopyrite, and pyrite occur with a small amount of galena, native Bi, and stannite. Chemical compositions of sphalerite vary from 17.4 mole% FeS in average for dark grey sphalerite, 3.6 mole% for reddish brown sphalerite in skarn ore, and to 10.3 mole% FeS in hydrothermal vein ore. In comparison with representative metallic deposits in South Korea on the FeS-MnS-CdS diagram, skarn and hydrothermal vein ore plot close to the field of Pb-Zn deposits and Au-Ag deposits, respectively. Arsenic contents of arsenopyrite in hydrothermal vein ore decrease from 31.93~33.00 at.% in early stage to 29.58~30.21 at.% in middle stage, and their corresponding mineralizing temperature and sulfur fugacity are $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm$. and $330{\sim}364^{\circ}C$, <$10^{-8}atm$. respectively. Phase equilibrium temperatures calculated from Fe and Zn contents for coexisting sphalerite and stannite in hydrothermal vein are $236{\sim}254^{\circ}C$. Sulfur isotope compositions are 5.4~7.2‰ for skarn ore and 5.4~8.4‰ for hydrothermal vein ore, being similar or slightly higher to magmatic sulfur, suggesting that ore sulfur was mostly of magmatic origin with partial derivation from host rocks. However, much higher sulfur isotope equilibrium temperatures of $549^{\circ}C$$487^{\circ}C$, respectively for skarn ore and hydrothermal ore, than those estimated from phase equilibria imply that isotopic equilibrium has not been fully established.
Keywords
Seongdo deposit; skarn; hydrothermal deposit; sphalerite; sulfur isotope;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Barton, P.B. and Bethke, P.M., Jr. (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineral., v.72, p.451-467.
2 Chakrabarti, A.K. (1967) On the trace element geochemistry of Zawar sulphides and its relation to metallogenesis. Can. Mineral., v.9, p.258-262.
3 Choi, J.B. and Kim, S.J. (1991) Mineralogy and iron chemistry of garnets and clinopyroxenes in the skarn deposits, the Hambaek geosyncline belt, Korea. Jour. Miner. Soc. Korea, v.4, p.119-128.
4 Choi, S.G. (1993) Compositional variations of sphalerite and their genetic characteristics from gold and/or silver deposits in Central Korea. Jour. Korean Inst. Mining Geol., v.26, p.135-144.
5 Choi, S.G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009) Re-evaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Econ. Environ. Geol., v.29, p.1-9.
6 Choi, S.G., Pak, S.J., Lee, P.K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ. Environ. Geol., v.37, p.1-19.
7 Chon, H.T. and Shimazaki, H. (1986) Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Jour. Korean Inst. Mining Geol., v.19, p.139-149.
8 Cook, N.j., Ciobanue, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochim. Cosmochim. Acta., v.73, p.4761-4791.   DOI
9 Craig, J.R., Ljokjell, P. and Vokes, F.M. (1984) Sphalerite compositional variations in sulfide ores of the Norwegian Caledonides. Econ. Geol., v.79, p.1727-1735.   DOI
10 Faure, G. (1986) Principles of isotope geology. 2nd ed., John Wiley & Sons, 589p.
11 Gottesmann, W., Gottesmann, B. and Seifert, W. (2009) Sphalerite composition and ore genesis at the Tumurtijnovoo Fe-Mn-Zn skarn deposit, Mongolia. N. Jb. Miner. Abh., v.185, p.249-280.   DOI
12 Im, H.K., Shin, D.B. and Heo, S.H. (2014) Occurrence and geochemical characteristics of the Haenam Pb-Zn skarn deposit. Econ. Environ Geol., v.47, p.363-379.   DOI
13 Ishihara, S., Jin, M.S. and Kajiwara, Y. (2002) Sulfur content and isotopic ratio of Cambro-Ordovician carbonate rocks from South Korea: a possible source for Mesozoic magmatic-hydrothermal ore sulfur. Resource Geol., v.52, p.41-48.   DOI
14 Kim, K.H., Nakai, N. and Kim, O.J. (1981) A mineralogical study of the skarn minerals from the Shinyemi lead-zinc ore deposits, Korea. Jour. Korean Inst. Mining Geol., v.14, p.167-182.
15 KIGAM(Korea Institute of Geoscience and Mineral Resources)(2016) Geology and ore deposit survey, and origin study for securing potential orebody in the Taebaegsan metallogenic belt. KIGAM report, GP2015-032-2016(2), 250p.
16 Kim, K.H. and Nakai, N. (1980) Sulfur isotope composition and isotopic temperatures of some base metal ore deposits, South Korea. Jour. Geol. Soc. Korea, v.16, p.124-134.
17 Kim, K.H. and Nakai, N. (1982) Sulfur isotope composition and isotopic temperatures of the Shinyemi lead and zinc ore deposits, western Taebaegsan metallogenic belt, Korea. Jour. Korean Inst. Mining Geol., v.15, p.155-166.
18 Kim, K.H. and Shin, J.S. (1987) Stable isotope and fluid inclusion studies of the Manjang copper mine, South Korea. Jour. Korean Inst. Mining Geol., v.20, p.169-177.
19 KORES(Korea Resources Corporation)(1990) Ore deposit of South Korea. v.12, p.144-145.
20 KORES(Korea Resources Corporation)(2013) Bulletin of mining 2012. 551p.
21 Kretschmar, U. and Scott S.D. (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can. Mineral., v.14, p.364-386.
22 Kwak, J.Y., Kang, C.W., Joo, S.Y., Jeong, J.H. and Choi, J.B. (2015) Occurence of Zn-Pb Deposits in Danjang-Myeon, Milyang Area. Jour. Miner. Soc. Korea, v.28, p.279-292.   DOI
23 Lee, C.H., Lee, H.K. and Kim, S.J. (1998) Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineral. Deposita, v.33, p.379-390.   DOI
24 Lee, S.G., Shin, S.C., Kim, K,H., Lee, T., Koh, H. and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon Metamorphic Belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Res., v.17, p.87-101.   DOI
25 Lee, H.K., Yoo, B.C. and Kim, S.J. (1992) Mineralogy and ore genesis of the Daebong gold-silver deposits, Chungnam, Korea. Jour. Korean Inst. Mining Geol., v.25, p.297-316.
26 Lee, J.H. and Kim, J.H. (1972) Geological map of Korea (1:50,000), Goesan sheet. Geological survey of Korea, v.27, 22p.
27 Lee, M.S. (1985) Sulfur and carbon isotope studies of principal metallic deposits is the metallogenic province of the Taebaeg Mt. Region, Korea. Jour. Korean Inst. Mining Geol., v.18, p.247-251.
28 Lim, E.D., Yoo, B.C. and Shin, D.B. (2016) Skarnization and Fe mineralization at the Western orebody in the Manjang deposit, Goesan. Jour. Miner. Soc. Korea, v.29, p.141-153.   DOI
29 Lim, O., Yu, J.H., Koh, S.M. and Heo, C.H. (2013) Mineralogy and chemical compositions of Dangdu Pb-Zn deposit. Econ. Environ. Geol., v.46, p.123-140.   DOI
30 Mariko, T. and Yang, D.Y. (1993) Magnesian skarn-type magnetite deposits of the Shinyemi mine, Korea. In: Maurice Y.N. (ed.) Proceeding of the 8th IAGOD Symposium, Ottawa, Canada. p.255-269.
31 Meinert, L.D., Dipple, G.M. and Nicolescu, S. (2005) World skarn deposits. Econ. Geol. 100th anniversary volume, p.299-336.
32 Mizuta, T., Shimazaki, H., Kaneda, H. and Lee, M.S. (1984) Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. In: Tsusue, A. (ed.) Granitic provinces and associated ore deposits in South Korea, p.127-152.
33 Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits. John Wiley and Sons, p.509-567.
34 Na, C.K. (1994) Genesis of granitoid batholiths of Okchon Zone, Korea and its implications for crustal evolution. Ph. D. Thesis, Univ. Tsukuba, Japan.
35 Nakamura, Y. and Shima, H. (1982) Fe and Zn partitioning between sphalerite and stannite. In: Joint Meeting of Soc. Mining Geol. Japan, Assoc. Miner. Petro., Econ. Geol. and Miner. Soc. Japan. Abstracts A-8.
36 Newberry, R.J. (1991) Scheelite-bearing skarns in the Sierra Nevada region, California; Contrasts in zoning and mineral compositions and tests of infiltration metasomatism theory. In: Barto-Kyriakidis, A. (ed.), Skarns-their genesis and metallogeny: Athens, Greece. Theophrastus Publications S.A., p.343-384.
37 Palero-Fernandez, F.J., and Martin-Izard, A. (2005) Trace element contents in galena and sphalerite from ore deposits of the Alcudia valley mineral field (Eastern Sierra Morena, Spain). Jour. Geochem. Exp., v.86, p.1-25.   DOI
38 Park, H.I., Woo, Y.K. and Hwang, J. (1988) Polymetallic mineralizatioin in the Eunchi silver mine. Jour. Geol. Soc. Korea, v.24, p.431-449.
39 Petruk, W. (1973) Tin sulfides from the deposits of Brunswick tin mines. Can. Mineral., v.12, p.46-54.
40 Ray, G.E., Webster, I.C.L. and Ettlinger, A.D. (1995) The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks. Econ. Geol., v.90, p.920-937.   DOI
41 Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.653-669.   DOI
42 Sui, J.X., Li, J.W., Wen, G. and Jin, X.Y. (2017) The Dewulu reduced Au-Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geol. Rev., v.80, p.1230-1244.   DOI
43 Seal II, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. In: Vaughan, D.J. (ed.), Sulfide mineralogy and geochemistry. Reviews in Mineralogy & Geochemistry. Mineral. Soc. Am., v.61, p.633-677.
44 Seo, J.U., Choi, S.G., Kim, C.S., Park, J.W., Yoo, I.K. and Kim, N.H. (2007) The skarnification and Fe-Mo mineralization at lower part of western Shinyemi ore body in Taeback area. Jour. Miner. Soc. Korea, v.20, p.35-46.
45 So, C.S., Yun, S.T., Kim, S.H., Youm, S.J., Heo, C.H. and Choi, S.G. (1993) Mesothermal gold-silver mineralization at the Bodeok mine, Boseong area: a fluid inclusion and stable isotope study. Jour. Korean Inst. Mining Geol., v.26, p.433-444.
46 Vaughan, D.J. and Craig, J.R. (1997) Sulfide ore mineral stabilities, morphologies, and intergrowth textures. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits. John Wiley and Sons, New York, p.367-434.
47 Yang, C.M. and Choi, J.B. (2010) Occurrence of the Pb-Zn skarn deposits in Gukjeon mine, Korea. Jour. Miner. Soc. Korea., v.23, p.413-428.
48 Yeom, T.S. and Shin, D.B. (2015) Ore minerals and genetic environments of the Seungryung Zn deposit, Muzu, Korea. Econ. Environ Geol., v.1, p.1-13.
49 Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, fluid inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Econ. Environ. Geol., v.35, p.299-316.
50 Choi, B.K., Choi, S.G., Seo, J.U., Yoo, I.K., Kang, H.S. and Koo, M.H. (2010) Mineralogical and geochemical characteristics of the Wolgok-Seongok orebodies in the Gagok skarn deposit: their genetic implications. Econ. Environ. Geol., v.43, p.477-490.
51 Bjorn, J., Roy, A.W. and Donal, G.F. (1993) Zonation patterns of skarn garnets: Records of hydrothermal system evolution. Geology, v.21, p.113-116.   DOI
52 Bae, Y.B. (1992) A study on the Bug-ap orebody in the Shinyemi mine. Jour. Korean Earth Sci. Soc., v.13, p.127-135.