Browse > Article
http://dx.doi.org/10.9719/EEG.2015.48.1.1

Ore Minerals and Genetic Environments of the Seungryung Zn Deposit, Muzu, Korea  

Yeom, Taesun (Department of Geoenvironmental Sciences, Kongju National University)
Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
Publication Information
Economic and Environmental Geology / v.48, no.1, 2015 , pp. 1-13 More about this Journal
Abstract
The geology of the Seungryung Zn deposit, located in the Muzu basin, consists of Precambrian leucocratic granitic gneiss, Cretaceous clastic rocks, pyroclastic rocks, and intrusive rocks. The deposit shows a weakly skarnized hydrothermal replacement ore developed along limestone bed in the gneiss. The mineralization can be divided into three stages: the early skarnization producing garnet and pyroxene, the main mineralization in the middle stage precipitating most metallic minerals such as magnetite, sphalerite, chalcopyrite, pyrrhotite, Pb-Ag-Bi-S system minerals, and the late stage for altered or low temperature minerals such as chlorite and marcasite. Pb-Ag-Bi-S system minerals include heyrovskite-eskimoite solid solution, lillianite-gustavite solid solution, and vikingite. Chalcopyrite diseases are quite common in sphalerite showing bead chains and dusting textures. The ${\delta}^{34}S$ values of sulfides minerals are concentrated within the narrow range of 3.4~4.1‰ for pyrite, 3.3~4.3‰ for sphalerite, 4.0~4.3‰ for chalcopyrite, and 2.8‰ for galena, suggesting that most sulfur is of igneous origin. Sulfur isotope geothermometry is calculated to be $346{\sim}431^{\circ}C$, implying that the mineralization occurred at relatively high temperature. FeS contents of sphalerite are relatively high in the range of 6.58~20.16 mole% (avg. 16.58 mole%) with the enrichment of Mn compared to Cd, similarly to representative skarn Pb-Zn deposits in South Korea. On the contrary, sphalerite from Au-Ag deposits in the Seolcheon mineralized zone around the Seungryung deposit is enriched in Cd, showing similar feature like representative epithermal Au-Ag deposits. This suggests that around the related igneous rocks, magnetite and sphalerite were produced at high temperature in the Seungryung deposit, and with decreasing temperature and compositional change of mineralizing fluids, Au-Ag mineralization proceeded in the Seolcheon mineralized zone.
Keywords
Seungryung deposit; hydrothermal replacement; sphalerite; Pb-Ag-Bi-S system minerals; sulfur isotope;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Lee, C.H. and Park, H.I. (1992) Mode of occurrences and depositional conditions of Sb, Bi sulfosalt minerals from south ore deposits, Dunjeon gold mine. Jour. Korean Inst. Mining Geol., v.25, p.17-25.
2 Lee, C.H. and Park, H.I. (1995) Some Pb-Bi-Sb-S minerals from the Dunjeon gold mine, northern Taebaegsan mining district, Korea. Resource Geol., v.45, p.323-329.
3 Lee, H.K., Yoo, B.C. and Kim, S.J. (1992) Mineralogy and ore genesis of the Daebong gold-silver deposits, Chungnam, Korea. Jour. Korean Inst. Mining Geol., v.25, p.297-316.
4 Lee, H.K., Lee, C.H. and Song, S.H. (1996) Ore minerals and mineralization conditions of magnetite deposits in the Janggun mine, Korea. Econ. Environ. Geol, v.29, p.1-9.
5 Lee, M.S. (1985) Sulfur and carbon isotope studies of principal metallic deposits in the metallogenic province of the Taebaeg Mt. region, Korea. Jour. Korean Inst. Mining Geol., v.18, p.247-251.
6 Lim, O., Yu, J.H., Koh, S.M. and Heo, C.H. (2013) Mineralogy and chemical compositions of Dangdu Pb-Zn deposit. Econ. Environ. Geol., v.46, p.123-140.   과학기술학회마을   DOI   ScienceOn
7 Mariko, T. and Yang, D.Y. (1993) Magnesian skarn-type magnetite deposits of the Shinyemi mine, Korea. In Maurice Y.N. (ed.) Proceeding of the 8th IAGOD Symposium, Ottawa, Canada, p.255-269.
8 Mizuta, T., Shimazaki, H., Kaneda, H. and Lee, M.S. (1984) Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. In Tsusue, A., (ed.), Granite provinces and associated ore deposits in South Korea. p.127-152.
9 Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In Barnes, H.L. (eds.), Geochemistry of Hydrothermal Ore Deposits. Jhon Wiley and Sons, p.509-567.
10 Park, H.I., Woo, Y.K. and Hwang, J. (1988) Polymetallic mineralizatioin in the Eunchi silver mine. Jour. Geol. Soc. Korea., v.24, p.431-449.
11 Park, J.W. and Lee, Y.I. (1997) Lithostratigraphic revision of the Cretaceous Muju Basin, Korea. Jour. Geol. Soc. Korea., v.33, p.65-77.   과학기술학회마을
12 Park, J.W. and Lee, Y.I. (2000) Provenance of Cretaceous conglomerates(the Gilwangri Formation) of the Muju Basin in Mt. Jeogsang area, Korea. Jour. Geol. Soc. Korea, v.36, p.355-370.   과학기술학회마을
13 Seal II, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. In: Vaughan, D.J. (ed.), Sulfide mineralogy and geochemistry. Reviews in Mineralogy & Geochemistry. Mineral. Soc. Am., v.61, p.633-677.
14 Seo, J.U., Choi, S.G., Kim, C.S., Park, J.W., Yoo, I.K. and Kim, N.H. (2007) The skarnification and Fe-Mo mineralization at lower part of western Shinyemi ore body in Taeback area. Jour. Mineral. Soc. Korea, v.20, p.35-46.   과학기술학회마을
15 Shin, D.B. (2006) Occurrence and mineral chemistry of Pb-Ag-Bi-S system minerals in the Nakdong As-Bi deposits, South Korea. Econ. Environ. Geol., v.39, p.643-651.   과학기술학회마을
16 Shin, D.B., Lee, C.H. and Lee, K.S. (2005) Occurrence and mineral chemistry of bismuth sulfide-tellurideselenide solid solutions (ingodite, Joseite, and unnamed phase) in the Nakdong deposit, South Korea. Neues Jahrbuch fur Mineralogie, v.181, p.293-302.   DOI
17 So, C.S., Yun, S.T., Choi, S.H., Kim, S.H. and Kim, M.Y. (1992) Cretaceous epithermal Au-Ag mineralization in the Muju-Yeongam district (Sulcheon mineralized area), Republic of Korea. Jour. Korean Inst. Mining Geol., v.25, p.115-131.
18 Yeom, T.S. (2014) Geology and ore mineralization of the Seungryung Zn deposit, Muzu, Korea. Master thesis, Kongju National University, 74p.
19 Ueda, A. and Krouse, H.R. (1986) Direct conversion of sulphide and sulphate minerals to $SO_2$ for isotope analyses. Geochem. J., v.20, p.209-212.   DOI
20 Yang, C.M. and Choi, J.B. (2010) Occurrence of the Pb-Zn skarn deposits in Gukjeon mine, Korea. Jour. Miner. Soc. Korea., v.23, p.413-428.   과학기술학회마을
21 Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea. Econ. Environ. Geol., v.35, p.299-316.   과학기술학회마을
22 Youn, S.T. (2008) Chalcopyrite disease in sphalerite: A case of the Soowang ore deposits in Muju, Republic of Korea. Jour. Korean Earth Sci. Soc., v.29, p.551-558.   과학기술학회마을   DOI
23 Youn, S.T. and Park, H.I. (1991) Gold and silver mineralization in the Yonghwa mine. Jour. Korean Inst. Mining Geol., v.24 p.107-129.
24 Youn, S.T. and Park, H.I. (1993) Gold and silver mineralization in the Weolseong mine. Jour. Korean Earth Sci. Soc., v.14, p.263-273.   과학기술학회마을
25 Youn, S.T. and Park, H.I. (1997) Stable isotope study of gold-silver deposits in the Muju-Yongdong area. Jour. Korean Earth Sci. Soc., v.18, p.60-69.   과학기술학회마을
26 Youn, S.T. and Park, H.I. (2004) Gold and silver mineralization of the Soowang ore deposits in Muju, Korea. Jour. Korean Earth Sci. Soc., v.25, p.484-494.   과학기술학회마을
27 Chakrabarti, A.K. (1967) On the trace element geochemistry of Zawar sulphides and its relation to metallogenesis. Canadian Mineralogist, v.9, p.258-262.
28 Bae, Y.B. (1992) A study on the Bug-ap orebody in the Shinyemi mine. Jour. Korean Earth Sci. Soc., v.13, p.127-135.   과학기술학회마을
29 Barton, P.B. (1978) Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan. Mining Geol., v.28, p.293-300.
30 Barton, P.B. and Bethke, P.M. (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineralogist, v.72, p.451-467.
31 Choi, B.K., Choi, S.G., Seo, J.U., Yoo, I.K., Kang, H.S. and Koo, M.H. (2010) Mineralogical and geochemical characteristics of the Wolgok-Seongok orebodies in the Gagok skarn deposit : their genetic implications. Econ. Environ. Geol., v.43, p.477-490.   과학기술학회마을
32 Choi, S.G., Pak, S.J., Lee, P.K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ Environ. Geol., v.37, p.1-19.   과학기술학회마을
33 Choi, S.G. (1993) Compositional variations of sphalerites and their genetic characteristics from gold and/or silver deposits in central Korea. Econ. Environ. Geol., v.26, p.135-144.
34 Choi, S.G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009) Re-evaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Econ. Environ. Geol., v.29, p.1-9.
35 Choi, S.G., Chung, J.I. and Imai, N. (1986) Compositional variation of arsenopyrites in arsenic and polymetallic ores from the Ulsan mine, Republic of Korea, and their application to a geothermometer. Jour. Korean Inst. Mining Geol., v.19, p.199-218.
36 Chon, H.T. and Shimazaki H. (1986) Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Jour. Korean Inst. Mining Geol., v.19, p.139-149.
37 Faure, G. (1986) Principles of isotope geology. 2nd ed., John Wiley & Sons, p.589.
38 Fleischer, M. (1955) Minor elements in some sulfide minerals. Economic Geology, v.50, p.970-1024.
39 Im, H.K., Shin, D.B. and Heo, S.H. (2014) Occurrence and geochemical characteristics of the Haenam Pb-Zn skarn deposit. Econ. Environ Geol, v.47, p.363-379.   과학기술학회마을   DOI
40 Kim, C.J. and Park, H.I. (1984) Mineral paragenesis and fluid inclusions of Geoje copper ore deposits. Jour. Korean Inst. Mining Geol., v.17, p.245-258.
41 Kim, M.S., Yun, S.H. and Koh, J.S. (2008) Petrological study on the Seolcheon tuff in the Yeongnam massif, Muju. Jour. Geol. Soc. Korea., v.44, p.199-217.   과학기술학회마을
42 Kim, K.H. and Nakai, N. (1980) Sulfur isotope composition and isotopic temperatures of some base metal ore deposits, South Korea. Jour. Geol. Soc. Korea, v.16, p.124-134.   과학기술학회마을
43 Kim, K.H. and Nakai, N. (1982) Sulfur isotope composition and isotopic temperatures of the Shinyemi lead and zinc ore deposits, western Taebaegsan metallogenic belt, Korea. Jour. Korean Inst. Mining Geol., v.15, p.155-166.
44 Kim, K.H., Nakai, N. and Kim, O.J. (1981) A mineralogical study of the skarn minerals from the Shinyemi lead-zinc ore deposits, Korea. Jour. Korean Inst. Mining Geol., v.14, p.167-182.
45 Kim, M.Y. and Shin, H.J. (1989) Chemical composition of sphalerite relating to mineralization at the Tongyoung mine, Korea.. Jour. Korean Inst. Mining Geol., v.22, p.103-115.
46 KMPC(Korea Mining Promotion Corporation) (1982) Report on drilling of ore deposit. v.5, p.341-448.
47 KMPC(Korea Mining Promotion Corporation) (1983) Report on drilling of ore deposit. v.6, p.239-277.
48 KMPC(Korea Mining Promotion Corporation) (1990) Ore deposits in Korea. v.12, p.153-154.
49 Kojima, S. and Sugaki, A. (1985) Phase relations in the central portion of the Cu-Fe-Zn-S system between 500 and 300 under hydrothermal conditions. Economic Geology, v.80, p.158-171.   DOI
50 KORES(Korea Resources Corporation) (2013) Bulletin of mining 2012. 551p.