Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.3.261

Interpretation of Origin and Methanogenic Pathways of Coalbed Gases from the Asem-Asem Basin, Southeast Kalimantan, Indonesia  

Chun, Jong-Hwa (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources)
Hwang, In Gul (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources)
Lee, Wonsuk (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources)
Lee, Taehun (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources)
Kim, Yuri (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Economic and Environmental Geology / v.55, no.3, 2022 , pp. 261-271 More about this Journal
Abstract
Six gas samples were collected from coal and coaly shale from core AA-1, which was acquired from the Asem-Asem Basin, southeast Kalimantan, Indonesia. These coalbed gas samples were analyzed for the molecular composition, carbon isotope (δ13CCH4, δ13CC2, and δ13CCO2), hydrogen isotope (δDCH4), hydrocarbon index (CHC), and carbon dioxide-methane index (CDMI) to document their origin and methanogenic pathways. Core AA-1 successively consists of lower clastic sedimentary rocks (Sedimentary Unit-1, SU-1) containing coal and coaly shale, and upper limestone (Sedimentary Unit-2, SU-2), unconformably underlain by serpentinized basement interpreted as part of the Cretaceous Meratus subduction complex (MSC). The coal and coaly shale (SU-1) were deposited in a marshes nearby a small-scale river. Compositions of coalbed gases show that methane ranges from 87.35 to 95.29% and ethane ranges from 3.65 to 9.97%. Carbon isotope of coalbed methane (δ13CCH4) ranges from -60.3 to -58.8‰, while hydrogen isotope (δDCH4) ranges from -252.9 to -252.1‰. Carbon isotope of coalbed ethane (δ13CC2) ranges from -32.8 to -31.2‰, carbon isotope of coalbed carbon dioxide (δ13CCO2) ranges from -8.6 to -6.2‰. The coalbed CO2 is interpreted to be an abiogenic origin based on a combination of δ13CCO2 and CDMI and could have been transported from underlying CO2 bearing MSC through faults. The methanogenic pathways of coalbed gases are interpreted to have originated from primary methyl-type fermentation and mixed with CO2 reduction, affecting thermogenic non-marine coal-type gases based on analyses of isotopic ratios and various indexes.
Keywords
Indonesia; Asem-Asem Basin; coalbed gases; origin; methanogenic pathways;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ruppert, L.F. and Moore, T.A. (1993) Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia. Org. Geochem., v.20(2), p.233-247. doi: 10.1016/0146-6380(93)90041-9   DOI
2 Hosgormez, H., Yalcin, M.N., Cramer, B., Gerling, P., Faber, E., Schaefer, R.G. and Mann U. (2002) Isotopic and molecular composition of coal-bed gas in the Amasra region (Zonguldak basin-wester Black Sea). Org. Geochem., v.33, p.1429-1439. doi: 10.1016/S0146-6380(02)00123-7   DOI
3 Liu, Q., Wu, X., Wang, X., Jin, Z., Zhu, D., Meng, Q., Huang, S., Liu, J. and Fu, Q. (2019) Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas. Ear.-Sci. Rev. v.190, p.247-272. https://doi.org/10.1016/j.earscirev.2018.11.017.   DOI
4 Moore, T.A. (2012) Coalbed methane: A review. Inter. J. Coal Geol., v.101, p.36-81. doi: 10.1016/j.coal.2012.05.011.   DOI
5 Singh, P.K., Singh, M.P., Singh, A.K. and Arora, M. (2010) Petrographic characteristics of coal from the Lati Formation, Tarakan basin, East Kalimantan, Indonesia. Inter. J. Coal Geol., v.81, p.109-116. doi: 10.1016/j.coal.2009.11.006.   DOI
6 Moore, T.A., Bowe, M. and Nas C. (2014) High heat flow effects on a coalbed methane reservoir, East Kalimantan (Borneo), Indonesia. Inter. J. Coal Geol., v.131, p.7-31. http://dx.doi.org/10.1016/j.coal.2014.05.012.   DOI
7 Park, S.-W. (1999) Coalbed methane potential for Korean anthracite and possibility of its utilization. Econ. Environ. Geol., v.32(1), p.113-121.
8 Park, S.-W. (2009) Preliminary assessment of methane storage capacity of coalseams from Dogye area of the Samcheok coalfield. J. Geol. Soc. Kor., v.45(3), p.249-259.
9 Sosrowidjojo, I.B. and Saghafi, A. (2009) Development of the first coal seam gas exploration program in Indonesia: Reservoir properties of the Muaraenim Formation, south Sumatra. Inter. J. Coal Geol., v.79, p.145-156. doi: 10.1016/j.coal.2009.07.002.   DOI
10 Milkov, A.V. and Etiope, G. (2018) Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. v.125, p.109-120. https://doi.org/10.1016/j.orggeochem.2018.09.002.   DOI
11 Aikuan, W., Yong, Q., Yanyan, W. and Baowen W. (2010) Status of research on biogenic coalbed gas generation mechanisms. Min. Sci. Tech., v.20, p.0271-0275. doi: 10.1016/S1674-5264(09)60196-4.   DOI
12 Belkin, H.E., Tewalt, S.J., Hower, J.C., Stucker, J.D. and O'Keefe, J.M.K. (2009) Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia, Inter. J. Coal Geol., v.77, p.260-268. doi: 10.1016/j.coal.2008.08.001.   DOI
13 Friederich, M., Moore, T.A. and Flores, R.M. (2016) A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: Why does Indonesia have such extensive coal deposits? Inter. J. Coal Geol., v.166, p.2-35. http://dx.doi.org/10.1016/j.coal.2016.06.013.   DOI
14 Stevens, S.H. and Hadiyanto. (2004) Indonesia: Coalbed methane indicators and basin evaluation. SPE Asia Pacific Oil and Gas Conference, 18-20 October 2004, Perth Australia, SPE 88630. doi: 10.2118/88630-MS   DOI
15 Strapoc, D., Schimmelmann, A. and Mastalerz, M. (2006) Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal. Org. Geochem., v.37, p.152-164. doi: 10.1016/j.orggeochem. 2005.10.002.   DOI
16 Chun, J.-H., Ryu, B.-J., Son, B.-K., Kim, J.-H., Lee, J.Y., Bahk, J.-J., Kim, H.-J., Woo, K.S., Nehza O. (2011) Sediment mounds and other sedimentary features related to hydrate occurrences in a columnar seismic blanking zone of the Ulleung Basin, East Sea, Korea. Mar. Petrol. Geol. v.28, p.1787-1800. doi: 10.1016/j.marpetgeo.2011.06.006.   DOI
17 Demchuk, T. and Moore, T.A. (1993) Palynofloral and organic characteristics of a Miocene bog-forest, Kalimantan, Indonesia. Org. Geochem., v.20, p.119-134. doi: 10.1016/0146-6380(93)90032-7   DOI
18 Dai, J. Ni, Y., Liao, F., Hong, F. and Yao, L. (2019) The significance of coal-derived gas in major gas producing countries. Petro. Explo. Devel., v.46(3), p.435-450. https://doi.org/10.1016/S1876-3804(19)60025-X.   DOI
19 Kim, Y.-I. (2015) Prospects for worldwide CBM (Coalbed Methane) Development. Econ. Environ. Geol., v.48(1), p.65-75. doi: 10.9719/EEG.2015.48.1.65   DOI
20 Zhang, K., Meng, Z. and Wang, X. (2019) Distribution of methane carbon isotope and its significance on CBM accumulation of No.2 coal seam in Yanchuannan CBM block, Ordos Basin, China. Journal of Petroleum Science and Enginnering 174, 92-105. https://doi.org/10.1016/j.petrol.2018.11.013.   DOI
21 Kotarba, M.J. and Rice, D.D. (2001) Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland. Appl. Geochem., v.16, p.895-910. doi: 10.1016/S0883-2927(00)00058-5   DOI
22 Whiticar, M.J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161, 291-314. doi: 10.1016/S0009-2541(99)00092-3   DOI
23 Strapoc, D., Mastalerz, M., Eble, C. and Schimmelmann, A. (2007) Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios. Org. Geochem., v.38, p.267-287. doi: 10.1016/j.orggeochem.2006.09.005.   DOI
24 Susilawati, R., Papendick, S.L., Gilcrease, P.C., Esterle, J.S., Golding, S.D. and Mares, T.E. (2013) Preliminary investigation of biogenic gas production in Indonesian low rank coals and imlications for a renewable energy source. J. Asi. Ear. Sci., v.77, p.234-242. http://dx.doi.org/10.1016/j.jsease.2013.08.024.   DOI
25 Takeshita, T. (2013) Prospects for coalbed methane and shale gas in a carbon-constrined world: A preliminary analysis. Inter. J. Cle. Coal Ener., v.2, p.27-34. doi: 10.4236/ijcce.2013.22B007.   DOI
26 Wakita, K., Miyazaki, K., Zulkarnain, I., Sopaheluwakan, J. and Sanyoto, P. (1998) Tectonic implications of new age data for the Meratus Complex of south Kalimantan, Indonesia. The Island Arc, v.7, p.202-222. doi: 10.1046/j.1440-1738.1998.00163.x   DOI
27 Whiticar, M.J., Faber, E. and Schoell, M. (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotope evidence. Geochim. Cosmochim. Act., v.50, p.693-709. doi: 10.1016/0016-7037(86)90346-7   DOI
28 Witts, D., Hall, R., Nichols, G. and Morley, R. (2012) A new depositional and provenance model for the Tanjung Formation, Barito Basin, SE Kalimantan, Indonesia. Journal of Asian Earth Sciences 56, 77-104. http://dx.doi.org/10.1016/j.jseaes.2012.04.022.   DOI
29 Flores, R.M., Rice, C.A., Stricker, G.D., Warden A. and Ellis, M.S. (2008) Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor. Inter. J. Coal Geol., v.76, p.52-75. doi: 10.1016/j.coal.2008.02.005.   DOI