DOI QR코드

DOI QR Code

영월 녹전리 일대 이목화강암과 관련된 스카른 광화작용

Skarn Mineralization Associated with the Imog Granite in Nokjeonri Area, Yeongwol

  • 정준영 (공주대학교 지질환경과학과) ;
  • 신동복 (공주대학교 지질환경과학과) ;
  • 임헌경 (공주대학교 지질환경과학과)
  • Jeong, Jun-Yeong (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Im, Heonkyung (Department of Geoenvironmental Sciences, Kongju National University)
  • 투고 : 2020.09.11
  • 심사 : 2020.09.28
  • 발행 : 2020.09.30

초록

태백산광화대에 속하는 영월군 녹전리 일대에는 이목화강암과의 경계부를 따라 탄산염암을 모암으로하는 Ca 및 Mg 스카른과 광화작용이 발달하였다. Ca 스카른은 석회암을 모암으로 석류석과 휘석이 산출되며, Mg 스카른은 백운암이 모암이며, 감람석 및 사문석이 발달한다. 광석광물은 초기 자철석-적철석 그리고 후기 자류철석(±회중석)-황철석-방연석-섬아연석이 정출된다. 석류석은 근거리에 안드라다이트 조성 그리고 원거리에 그로슐라 조성이 각각 우세하며, 휘석은 투휘석이 주로 산출된다. 이러한 조성변화는 유체가 이목화강암에서 원거리로 이동함에 따라 모암과의 반응이 증가하여 산화환경에서 환원환경으로 변화하였음을 나타낸다. Mg 스카른의 자철석이 Ca 스카른보다 Fe2O3는 높고 FeO는 낮은 특징을 보이며, Mg 스카른에서 높은 MgO 함량을 보인다. 섬아연석의 Zn/Fe 비는 이목화강암에서 멀어질수록 증가하는 경향을 보인다. 황화광물의 δ34S 값은 이목화강암과 유사한 값을 보이고 있어서 대부분의 황이 화성기원임을 시사한다. 광화작용은 온도 및 산소분압의 감소와 더불어 황분압이 증가함에 따라 스카른광물, 산화광물 그리고 황화광물 순으로 정출되었다.

The study area of Nokjeonri in Yeongwol belongs to the Taebaeksan Mineralized District. Ca and Mg skarn and related ore mineralization are developed in the Pungchon formation along the contact with the Imog granite. Ca skarn hosted in limestone mostly comprises garnet and pyroxene. Mg skarn developed in dolomite includes olivine and serpentine. Magnetite-hematite and pyrrhotite(±scheelite)-pyritegalena-sphalerite were mineralized during early and late stage, respectively. Garnet compositions are dominated by andradite series in proximal area and grossular series in distal area. Pyroxene compositions correspond to diopside series in majority. These compositional changes indicate that the fluids varied from oxidizing condition to reducing condition due to increased reaction with carbonated wall rocks as the fluids moved from the granite to a distal place. Fe2O3 and MgO concentrations of magnetite are higher in Mg skarn than those in Ca skarn, while FeO shows opposite trend. The Zn/Fe ratio of sphalerite increases with distance from the Imog granite. The δ34S values of sulfide minerals are similar to those of the Imog granite, indicating magmatic origin in ore sulfur. Mineralization was established in the order of skarn, oxide and sulfide minerals with decreasing temperature and oxygen fugacity and increasing sulfur fugacity.

키워드

참고문헌

  1. Barnes, S.J. and Roeder, P.L., 2001, The range of spinel composition in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
  2. Barton, P.B. and Toulmin, P., 1966, Phase relations involving sphalerite in the Fe-Zn-S system. Economic Geology, 61, 815-849. https://doi.org/10.2113/gsecongeo.61.5.815
  3. Bowman, J.R., 1998, Stable-isotope systematic of skarns. In Mineralized intrusion-related skarn systems (eds. Lentz, D.R.), Mineralogical Association of Canada, 99-145.
  4. Canet, C., Gonzalez-Partida, E., Camprubi, A., Castro-Mora, J., Romero, F.M., Prol-Ledesma, R.M., Linares, C., Romero-Guadarrama, J.A. and Sanchez-Vargas, L.I., 2011, The Zn-Pb-Ag skarns of Zacatepec, northeastern Oaxaca, Mexico: A study of mineral assemblages and ore-forming fluids. Ore Geology Reviews, 39, 277-290. https://doi.org/10.1016/j.oregeorev.2011.03.007
  5. Choi, B.K., Choi, S.G., Seo, J.E., Yoo, I.K., Kang, H.S. and Koo, M.H., 2010, Mineralogical and geochemical characteristics of the Wolgok-Seongok orebodies in the Gagok skarn deposit: their genetic implications. Economic and Environmental Geology, 43, 477-490.
  6. Choi, J., Shin, D. and Im, H., 2018, Regional variations of sulfur isotope compositions for metallic deposits in the Taebaeksan Mineralized District, South Korea. Geosciences Journal, 22, 79-89. https://doi.org/10.1007/s12303-017-0057-x
  7. Choi, S.G., 1993, Compositional variations of sphalerites and their genetic characteristics from gold and/or silver deposits in central Korea. Journal of the Korea Institute of Mining Geology, 26, 135-144.
  8. Choi, S.G., Choi, B.K., Ahn, Y.H. and Kim, T.H., 2009, Reevalution of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Economic and Environmental Geology, 42, 301-314.
  9. Chon, H.T., 1982, Compositional variation of sphalerite and its genetical implications to metallic ore deposits in Korea. Journal of the Korea Institute of Mining Geology, 19, 191-198.
  10. Chon, H.T. and Shimazaki, H., 1986, Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Journal of the Korea Institute of Mining Geology, 19, 139-149.
  11. Chon, H.T., Shimazaki, H. and Sato, K., 1981, Compositional variation of sphalerites from some hydrothermal metallic ore deposits in the Republic of Korea. Mining Geology, 31, 337-343.
  12. Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  13. Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F., 2009, Trace and minor elements in sphalerite: A LAICPMS study. Geochimica et Cosmochimica Acta, 73, 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
  14. Dare, S.A., Barnes, S.J., Beaudoin, G., Meric, J., Boutroy, E. and Potvin-Doucet, C., 2014, Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49, 785-796. https://doi.org/10.1007/s00126-014-0529-0
  15. Einaudi, M.T. and Burt, D.M., 1982, A special issue devoted to skarn depoists: Introduction-terminology, classification, and composition of skarn deposits. Economic Geology, 77, 745-754. https://doi.org/10.2113/gsecongeo.77.4.745
  16. Hong, Y.K., 1986, Geochemistry and K-Ar age of the Imog granite at the southwestern part of the Hambaeg basin, Korea. Economic and Environmental Geology, 19, 97-107.
  17. Im, H., Jeong, J.Y. and Shin, D., 2020, Genetic environment of W skarn and Pb-Zn vein mineralization associated with the Imog granite in the Taebaeksan Mineralized District, South Korea. Ore Geology Reviews, DOI: 103721.
  18. Im, H., Shin, D., Jeong, J.Y. and Lee, M., 2018, Spatio-temporal variation of polymetallic mineralization in the Wooseok deposit. Economic and Environmental Geology, 51, 493-507. https://doi.org/10.9719/EEG.2018.51.6.493
  19. Ishihara, S., Jin, M.S. and Kajiwara, Y., 2002, Sulfur content and isotopic ratio of Cambro-Ordovician carbonate rocks from South Korea: a possible source for Mesozoic magmatic-hydrothermal ore sulfur. Resource Geology, 52, 41-48. https://doi.org/10.1111/j.1751-3928.2002.tb00115.x
  20. Jamtveit, B., 1991, Oscillatory zonation patterns in hydrothermal grossular andradite garnet, nonlinear dynamics in regions of immiscibility. American Mineralogist, 76, 1319-1327.
  21. Jeong, J,Y., 2018, Geology and skarn mineralization chracteristics in Nokjeonri area Yeongwol. Master's Thesis, Kongju National University, 60p.
  22. Jugo, P.J., Candela, P.A. and Piccoli. P.M., 1999, Magmatic sulfides and Au:Cu ratios in porphyry deposits: an experimental study of copper and gold partitioning at $850\;^{\circ}C$, 100 MPa in a haplogranitic melt-pyrrhotite-intermediate solid solution-gold metal assemblage, at gas saturation. Lithos, 46, 573-589. https://doi.org/10.1016/S0024-4937(98)00083-8
  23. Kim, E.J., Park, M.E. and White, N.C., 2012, Skarn gold mineralization at the Geodo mine, South Korea. Economic Geology, 107, 537-551. https://doi.org/10.2113/econgeo.107.3.537
  24. Kim, O.J., 1971, Study on the intrusion epochs of younger granites and their bearing to orogenesis in South Korea. Journal of the Korea Institute of Mining Geology, 4, 1-9.
  25. KORES, 2014, Detailed geological survey report (Pb-Zn: Yemi area), 112p.
  26. Kwak, T.A.P., 2012, W-Sn skarn deposits: and related metamorphic skarns and granitoids. Elsevier, 24, 451p.
  27. Lee, C.H., Lee, H.K. and Kim S.J., 1998, Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janngun mine, Republic of Korea. mineralium deposita, 33, 379-390. https://doi.org/10.1007/s001260050156
  28. Lee, J.H., Yoo, B.C., Yang, Y.S., Lee, T.H. and Seo, J.H., 2019, Sphalerite geochemistry of the Zn-Pb orebodies in the Taebaeksan metallogenic province, Korea. Ore Geology Reviews. 107, 1046-1067. https://doi.org/10.1016/j.oregeorev.2019.03.030
  29. Lee, J.Y., Lee, I.H. and Hwang, D.H., 1996, Chemical composition of the Cretaceous granitoids and related ore deposits in the Taebaegsan Basin, Korea. Economic and Environmental Geology, 29, 247-256.
  30. Lee, M.S., Chang, H.W. and Lee, Y.J., 1990, Geochemical characteristics of the Imog granite. Journal of Geological Society of Korea, 26, 82-90.
  31. Lusk, J., Scott, S.D. and Ford, C.E., 1993, Phase relations in the Fe-ZnS system to 5 Kbars and temperatures between 325 and $150\;^{\circ}C$. Economic Geology, 88, 1880-1903. https://doi.org/10.2113/gsecongeo.88.7.1880
  32. Martin, J.D. and Gil, A.S.I., 2005, An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to $850\;^{\circ}C$ and up to 1GPa. Geochimica et Cosmochimica Acta, 69, 995-1006. https://doi.org/10.1016/j.gca.2004.08.009
  33. Meinert, L.D., 1992, Skarn and skarn deposits. Geoscience Canada, 19, 145-162.
  34. Meinert, L.D., 1997, Application of skarn deposit zonation models to mineral exploration. Exploration and Mining Geology, 6, 185-208. https://doi.org/10.1016/S0964-1823(98)00003-8
  35. Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005, World skarn deposits. Economic Geology. 100th anniversary volume, 299-336.
  36. Mizuta, T., Shimazaki, H., Kaneda, H. and Lee, M.S., 1984, Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. In Granitic province and associated ore deposits in South Korea (eds. Tsusue, A.), 127-152.
  37. Nadoll, P., Angerer, T., Mauk, J. L., French, D. and Walshe, J., 2014, The chemistry of hydrothermal magnetite: a review. Ore Geology Reviews, 61, 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013
  38. Ohmoto, H. and Lasaga, A.C., 1982, Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta, 46, 1727-1745. https://doi.org/10.1016/0016-7037(82)90113-2
  39. Ohmoto, H. and Rye, R.O., 1979, Isotopes of sulfur and carbon. In Geochemistry of hydrothermal ore deposits (eds. Barnes, H.L.), John Wiley and Sons, 509-567.
  40. Palero-Fernandez, F.J. and Martin-Izard, A., 2005, Trace element contents in galena and sphalerite from ore deposits of the Alcudia valley mineral field (Eastern Sierra Morena, Spain). Journal of Geochemical Exploration, 86, 1-25. https://doi.org/10.1016/j.gexplo.2005.03.001
  41. Pandit, D., 2015, Thermodynamic model for hydrothermal sulfide deposition in the paleoproterozoic granite ore system at Malanjkhand, Indian. Indian Journal of Geo-Marine Sciences, 44, 1697-1711.
  42. Parat, F., Holtz, F. and Streck, M.J., 2011, Sulfur-bearing magmatic accessory minerals. Reviews in Mineralogy and Geochemistry, 73, 285-314. https://doi.org/10.2138/rmg.2011.73.10
  43. Qiu, Z.J., Fan, H.R., Liu, X., Yang, K.F., Hu, F.F. and Cai, Y.C., 2017, Metamorphic P-T-t evolution of Paleoproterozoic schist-hosted Cu deposits in the Zhongtiao mountains, North China Craton: Retrograde ore formation during sluggish exhumation. Precambrian Research, 300, 59-77. https://doi.org/10.1016/j.precamres.2017.08.014
  44. Reguir, E.P., Chakhmouradian, A.R., Halden, N.M. and Yang, P., 2008, Early magmatic and reaction- induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. The Canadian Mineralogist, 46, 879-900. https://doi.org/10.3749/canmin.46.4.879
  45. Righter, K., Leeman, W.P. and Hervig, R.L., 2006, Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chemical Geology, 227, 1-25. https://doi.org/10.1016/j.chemgeo.2005.05.011
  46. Ryabchikov, I.D. and Kogarko, L.N., 2006, Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos, 91, 35-45. https://doi.org/10.1016/j.lithos.2006.03.007
  47. Scott, S.D. and Barnes, H.L., 1971, Sphalerite geothermometry and geobarometry. Economic Geology, 66, 653-669. https://doi.org/10.2113/gsecongeo.66.4.653
  48. Seal, II, R.R., 2006, Sulfur isotope geochemistry of sulfide minerals. In Sulfide mineralogy and geochemistry (eds. Vaughan, D.J.), Reviews in Mineralogy and Geochemistry, 61, 633-677. https://doi.org/10.2138/rmg.2006.61.12
  49. Seo, J.H., Yoo, B.C., Villa, I.M., Lee, J.H., Lee, T., Kim, C. and Moon, K.J., 2017, Magmatic-hydrothermal processes in Sangdong W-Mo deposit, Korea: Study of fluid inclusions and $^{39}Ar-^{40}Ar$ geochronology. Ore Geology Reviews, 91, 316-334. https://doi.org/10.1016/j.oregeorev.2017.09.019
  50. Shibue, Y., 1988, High cadmium contents of sphalerites from major tungsten deposits in Japan. Mineralogical Journal, 4, 115-125. https://doi.org/10.2465/minerj.14.115
  51. Simon, A.C. and Ripley, E.M., 2011, The role of magmatic sulfur in the formation of ore deposits. Reviews in Mineralogy and Geochemistry, 73, 513-578. https://doi.org/10.2138/rmg.2011.73.16
  52. Sui, J.X., Li, J.W., Wen, G. and Jin, X.Y., 2017, The Dewulu reduced Au-Cu skarn deposit in the Xiahe Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geology Reviews, 80, 1230-1244. https://doi.org/10.1016/j.oregeorev.2016.09.018
  53. Yang, D.Y., 1991, Mineralogy, petrology and geochemistry of the magnesian skarn-type magnetite deposits at the Shinyemi mine, Republic of Korea. Ph.D. dissertation, Waseda University, 323p.
  54. Yang, D.Y., Morioka, Y. and Mariko, T., 1990, Magnetite and spinel series minerals from the magnesian skarn-type iron deposit at the Shinyemi mine, Korea. Mining Geology, 40, 183-194.
  55. Yeom, T. and Shin, D., 2015, Ore minerals and genetic environments of the Seungryung Zn deposit, Muzu, Korea. Economic and Environmental Geology, 48, 1-13. https://doi.org/10.9719/EEG.2015.48.1.1
  56. Yun, H.S., 1986, Petrochemical study on the Cretaceous granitic rocks in the southern area of Hambaeg Basin. Economic and Environmental Geology, 19, 175-191.
  57. Zaw, K. and Singoyi, B., 2000, Formation of magnetitescheelite skarn mineralization at Kara, northwestern Tasmania: Evidence from mineral chemistry and stable isotopes. Economic Geology, 95, 1215-1230. https://doi.org/10.2113/gsecongeo.95.6.1215
  58. Zhou, J., Huang, Z., Zhou, M., Li, X. and Jin, Z., 2013, Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonatehosted Pb-Zn deposit, SW China. Ore Geology Reviews, 53, 77-92. https://doi.org/10.1016/j.oregeorev.2013.01.001
  59. Zuo, P., Liu, X., Hao, J., Wang, Y., Zhao, R. and Ge, S., 2015, Chemical compositions of garnet and clinopyroxene and their genetic significances in Yemaquan skarn ironcopper-zinc deposit, Qimantagh, eastern Kunlun. Journal of Geochemical Exploration, 158, 143-154. https://doi.org/10.1016/j.gexplo.2015.07.011