DOI QR코드

DOI QR Code

인도네시아 칼리만탄 남동측에 위치하는 아셈-아셈분지 석탄층 가스의 기원과 메탄생성경로 해석

Interpretation of Origin and Methanogenic Pathways of Coalbed Gases from the Asem-Asem Basin, Southeast Kalimantan, Indonesia

  • 천종화 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 황인걸 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 이원석 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 이태훈 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 김유리 (한국지질자원연구원 해저지질에너지연구본부)
  • Chun, Jong-Hwa (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Hwang, In Gul (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Wonsuk (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Taehun (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Yuri (Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2022.04.25
  • 심사 : 2022.06.23
  • 발행 : 2022.06.28

초록

인도네시아 칼리만탄 남동측에 위치하는 아셈-아셈분지(Asem-Asem Basin)에서 길이 540.3 m의 AA-1 시추코어를 획득하였고, 이 시추코어에 포함된 석탄층과 석탄질 셰일에서 6개의 석탄층 가스 시료를 채취하였다. 아셈-아셈분지에서 채취된 석탄층 가스의 성분, 탄소동위원소(δ13CCH4, δ13CC2, δ13CCO2), 수소동위원소((δDCH4), 탄화수소지표(CHC), 이산화탄소-메탄지표(CDMI)의 분석을 통하여 이들의 기원과 메탄생성경로를 해석하였다. AA-1 시추코어는 최하부에 메라투스섭입복합체(Meratus subduction complex)의 일부로 해석되는 사문암 기반암 상부에 석탄층과 석탄질 셰일을 포함하는 쇄설성 퇴적암(SU-1)과 석회암(SU-2)이 순차적으로 놓인다. 석탄층과 석탄질 셰일(SU-1)은 소규모 하천 주변의 습지에서 형성된 것으로 해석된다. SU-1에서 채취된 석탄층 가스의 탄화수소가스를 100%로 환산한 메탄 함량은 87.35~95.29% 범위이고, 에탄 함량은 3.65~9.97% 범위이다. 석탄층 메탄의 탄소동위원소(δ13CCH4) 값은 -60.3~-58.8‰ 범위이고 수소동위원소(δDCH4) 값은 -252.9~-252.1‰ 범위이다. 석탄층 에탄의 탄소동위원소(δ13CC2) 값은 -32.8~-31.2‰ 범위이고, 석탄층 이산화탄소의 탄소동위원소(δ13CCO2) 값은 -8.6~-6.2‰ 범위이다. 석탄층 이산화탄소는 탄소동위원소값과 이산화탄소-메탄지표 도표에서 비생물기원(abiogenic origin)에 도시되었고, 기반암인 메라투스섭입복합체에 포함된 이산화탄소가 단층 통하여 이동된 것으로 해석된다. AA-1 시추코어 석탄층 가스의 메탄생성경로는 동위원소, 탄화수소지표, 이산화탄소-메탄지표 분석을 바탕으로 일차적인 미생물 메틸발효작용과 이산화탄소환원작용의 혼합으로 해석되며, 열기원 비해성 석탄형 가스의 영향을 받은 것으로 해석된다.

Six gas samples were collected from coal and coaly shale from core AA-1, which was acquired from the Asem-Asem Basin, southeast Kalimantan, Indonesia. These coalbed gas samples were analyzed for the molecular composition, carbon isotope (δ13CCH4, δ13CC2, and δ13CCO2), hydrogen isotope (δDCH4), hydrocarbon index (CHC), and carbon dioxide-methane index (CDMI) to document their origin and methanogenic pathways. Core AA-1 successively consists of lower clastic sedimentary rocks (Sedimentary Unit-1, SU-1) containing coal and coaly shale, and upper limestone (Sedimentary Unit-2, SU-2), unconformably underlain by serpentinized basement interpreted as part of the Cretaceous Meratus subduction complex (MSC). The coal and coaly shale (SU-1) were deposited in a marshes nearby a small-scale river. Compositions of coalbed gases show that methane ranges from 87.35 to 95.29% and ethane ranges from 3.65 to 9.97%. Carbon isotope of coalbed methane (δ13CCH4) ranges from -60.3 to -58.8‰, while hydrogen isotope (δDCH4) ranges from -252.9 to -252.1‰. Carbon isotope of coalbed ethane (δ13CC2) ranges from -32.8 to -31.2‰, carbon isotope of coalbed carbon dioxide (δ13CCO2) ranges from -8.6 to -6.2‰. The coalbed CO2 is interpreted to be an abiogenic origin based on a combination of δ13CCO2 and CDMI and could have been transported from underlying CO2 bearing MSC through faults. The methanogenic pathways of coalbed gases are interpreted to have originated from primary methyl-type fermentation and mixed with CO2 reduction, affecting thermogenic non-marine coal-type gases based on analyses of isotopic ratios and various indexes.

키워드

과제정보

본 연구는 한국지질자원연구원에서 수행한 "3D 해저 정밀영상화를 위한 복합 탄성파 탐사 및 실규모 고분해능 처리기술(22-3312)"사업의 지원으로 수행되었다. 인도네시아 아셈-아셈분지의 AA-1 시추코어 시료는 "인도네시아 석탄층 메탄가스 생산 및 평가기술 개발(14-1134)" 사업에서 획득된 것으로, 인도네시아 현장에서 시추코어 채취에 도움을 주신 한국가스공사 한정민 박사팀, 동아대학교 권순일 교수팀, 인도네시아 LEMIGAS Panca Wahyudi 팀에게 감사드린다. 이 논문의 심사과정에서 유익한 제안과 비평을 주신 심사위원들께 감사드린다.

참고문헌

  1. Aikuan, W., Yong, Q., Yanyan, W. and Baowen W. (2010) Status of research on biogenic coalbed gas generation mechanisms. Min. Sci. Tech., v.20, p.0271-0275. doi: 10.1016/S1674-5264(09)60196-4.
  2. Belkin, H.E., Tewalt, S.J., Hower, J.C., Stucker, J.D. and O'Keefe, J.M.K. (2009) Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia, Inter. J. Coal Geol., v.77, p.260-268. doi: 10.1016/j.coal.2008.08.001.
  3. Chun, J.-H., Ryu, B.-J., Son, B.-K., Kim, J.-H., Lee, J.Y., Bahk, J.-J., Kim, H.-J., Woo, K.S., Nehza O. (2011) Sediment mounds and other sedimentary features related to hydrate occurrences in a columnar seismic blanking zone of the Ulleung Basin, East Sea, Korea. Mar. Petrol. Geol. v.28, p.1787-1800. doi: 10.1016/j.marpetgeo.2011.06.006.
  4. Demchuk, T. and Moore, T.A. (1993) Palynofloral and organic characteristics of a Miocene bog-forest, Kalimantan, Indonesia. Org. Geochem., v.20, p.119-134. doi: 10.1016/0146-6380(93)90032-7
  5. Dai, J. Ni, Y., Liao, F., Hong, F. and Yao, L. (2019) The significance of coal-derived gas in major gas producing countries. Petro. Explo. Devel., v.46(3), p.435-450. https://doi.org/10.1016/S1876-3804(19)60025-X.
  6. Flores, R.M., Rice, C.A., Stricker, G.D., Warden A. and Ellis, M.S. (2008) Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor. Inter. J. Coal Geol., v.76, p.52-75. doi: 10.1016/j.coal.2008.02.005.
  7. Friederich, M., Moore, T.A. and Flores, R.M. (2016) A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: Why does Indonesia have such extensive coal deposits? Inter. J. Coal Geol., v.166, p.2-35. http://dx.doi.org/10.1016/j.coal.2016.06.013.
  8. Hosgormez, H., Yalcin, M.N., Cramer, B., Gerling, P., Faber, E., Schaefer, R.G. and Mann U. (2002) Isotopic and molecular composition of coal-bed gas in the Amasra region (Zonguldak basin-wester Black Sea). Org. Geochem., v.33, p.1429-1439. doi: 10.1016/S0146-6380(02)00123-7
  9. Kim, Y.-I. (2015) Prospects for worldwide CBM (Coalbed Methane) Development. Econ. Environ. Geol., v.48(1), p.65-75. doi: 10.9719/EEG.2015.48.1.65
  10. Kotarba, M.J. and Rice, D.D. (2001) Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland. Appl. Geochem., v.16, p.895-910. doi: 10.1016/S0883-2927(00)00058-5
  11. Liu, Q., Wu, X., Wang, X., Jin, Z., Zhu, D., Meng, Q., Huang, S., Liu, J. and Fu, Q. (2019) Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas. Ear.-Sci. Rev. v.190, p.247-272. https://doi.org/10.1016/j.earscirev.2018.11.017.
  12. Milkov, A.V. and Etiope, G. (2018) Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. v.125, p.109-120. https://doi.org/10.1016/j.orggeochem.2018.09.002.
  13. Moore, T.A. (2012) Coalbed methane: A review. Inter. J. Coal Geol., v.101, p.36-81. doi: 10.1016/j.coal.2012.05.011.
  14. Moore, T.A., Bowe, M. and Nas C. (2014) High heat flow effects on a coalbed methane reservoir, East Kalimantan (Borneo), Indonesia. Inter. J. Coal Geol., v.131, p.7-31. http://dx.doi.org/10.1016/j.coal.2014.05.012.
  15. Park, S.-W. (1999) Coalbed methane potential for Korean anthracite and possibility of its utilization. Econ. Environ. Geol., v.32(1), p.113-121.
  16. Park, S.-W. (2009) Preliminary assessment of methane storage capacity of coalseams from Dogye area of the Samcheok coalfield. J. Geol. Soc. Kor., v.45(3), p.249-259.
  17. Ruppert, L.F. and Moore, T.A. (1993) Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia. Org. Geochem., v.20(2), p.233-247. doi: 10.1016/0146-6380(93)90041-9
  18. Singh, P.K., Singh, M.P., Singh, A.K. and Arora, M. (2010) Petrographic characteristics of coal from the Lati Formation, Tarakan basin, East Kalimantan, Indonesia. Inter. J. Coal Geol., v.81, p.109-116. doi: 10.1016/j.coal.2009.11.006.
  19. Sosrowidjojo, I.B. and Saghafi, A. (2009) Development of the first coal seam gas exploration program in Indonesia: Reservoir properties of the Muaraenim Formation, south Sumatra. Inter. J. Coal Geol., v.79, p.145-156. doi: 10.1016/j.coal.2009.07.002.
  20. Stevens, S.H. and Hadiyanto. (2004) Indonesia: Coalbed methane indicators and basin evaluation. SPE Asia Pacific Oil and Gas Conference, 18-20 October 2004, Perth Australia, SPE 88630. doi: 10.2118/88630-MS
  21. Strapoc, D., Schimmelmann, A. and Mastalerz, M. (2006) Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal. Org. Geochem., v.37, p.152-164. doi: 10.1016/j.orggeochem. 2005.10.002.
  22. Strapoc, D., Mastalerz, M., Eble, C. and Schimmelmann, A. (2007) Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios. Org. Geochem., v.38, p.267-287. doi: 10.1016/j.orggeochem.2006.09.005.
  23. Susilawati, R., Papendick, S.L., Gilcrease, P.C., Esterle, J.S., Golding, S.D. and Mares, T.E. (2013) Preliminary investigation of biogenic gas production in Indonesian low rank coals and imlications for a renewable energy source. J. Asi. Ear. Sci., v.77, p.234-242. http://dx.doi.org/10.1016/j.jsease.2013.08.024.
  24. Takeshita, T. (2013) Prospects for coalbed methane and shale gas in a carbon-constrined world: A preliminary analysis. Inter. J. Cle. Coal Ener., v.2, p.27-34. doi: 10.4236/ijcce.2013.22B007.
  25. Wakita, K., Miyazaki, K., Zulkarnain, I., Sopaheluwakan, J. and Sanyoto, P. (1998) Tectonic implications of new age data for the Meratus Complex of south Kalimantan, Indonesia. The Island Arc, v.7, p.202-222. doi: 10.1046/j.1440-1738.1998.00163.x
  26. Whiticar, M.J., Faber, E. and Schoell, M. (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotope evidence. Geochim. Cosmochim. Act., v.50, p.693-709. doi: 10.1016/0016-7037(86)90346-7
  27. Whiticar, M.J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161, 291-314. doi: 10.1016/S0009-2541(99)00092-3
  28. Witts, D., Hall, R., Nichols, G. and Morley, R. (2012) A new depositional and provenance model for the Tanjung Formation, Barito Basin, SE Kalimantan, Indonesia. Journal of Asian Earth Sciences 56, 77-104. http://dx.doi.org/10.1016/j.jseaes.2012.04.022.
  29. Zhang, K., Meng, Z. and Wang, X. (2019) Distribution of methane carbon isotope and its significance on CBM accumulation of No.2 coal seam in Yanchuannan CBM block, Ordos Basin, China. Journal of Petroleum Science and Enginnering 174, 92-105. https://doi.org/10.1016/j.petrol.2018.11.013.