• Title/Summary/Keyword: light strength

Search Result 1,541, Processing Time 0.027 seconds

Experimental Study on Ultra-Violet Resistance of FRP composites used in Strengthening RC members (FRP 복합체의 자외선 저항성에 관한 실험적 연구)

  • Song, Tae-Hyeob;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.333-336
    • /
    • 2006
  • In general, polymer materials undergo degradation when exposed to ultraviolet radiation, which can cause dissociation of chemical bonds. FRP composites which are used in strengthening existing structure are usually adhered on the concrete surface, its mechanical properties as well as appearance such as color, surface conditions are affected by sunlight and expecially ultraviolet light. In this study, variations of tensile strength after exposure for certain period of time through accelerated exposure by Xe arc methods specified in KS F 2274 are measured in order to examine strength degradation characteristics of FRP composite. As a result of ultraviolet light test for FRP composite after accelerated exposure for 0, 500, 1000, 1500 hour, discoloration of FRP composite occurs according to the passage of time. But, few strength degradations of FRP composite are observed due to exposure of ultraviolet ray with an small variation of tensile strength.

  • PDF

A Study on shrinkage of High Strength Lightweight Concrete using by-products (산업부산물을 활용한 고강도경량 콘크리트 건조수축 특성연구)

  • 장주영;윤요현;이승조;박정민;김태곤;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.36-39
    • /
    • 2003
  • In this study, we made the high strength light weight concrete which was composed of the garnet minute powder to be the industry by-product in the YoungJoo region and the artificial light weight aggregate which the high temperature(1100℃) plastic process. The characteristic of the autogenous shrinkage had been considered about strength characteristic and the age passage In the following addition: The concrete's each unit quantity was determined 145,160,175㎏f/㎥.w/b and s/a was determined 30%, 43%, 45%. the each garnet's substitution ratio was determined 0, 10%. In this results, the compressive strength appeared greatly as the unit joining discretion grew bigger. The autogenous shrinkage ratio was increased rapidly until 7th day but it was reduced after 7th day regardless of the mixed factor. The autogenous shrinkage ratio which follows the change of the unit quantity and s/a increased together as the unit quantity and the s/a increases.

  • PDF

A Plan to guarantee quality of Light-weight Cellular Concrete for floating floor (뜬바닥용 기포콘크리트의 품질확보 방안)

  • 이성호;정갑철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.938-943
    • /
    • 2003
  • The characteristics of lightweight cellular concrete has much influence on the compressive strength and flow from the design of mixture. This study is to investigate the characteristics of the compressive strength and flow for the mixture of lightweight cellular slurry. KS F 4039 was compared to the construction system and quality for lightweight cellular comcrete of floating floor. As the result of this study, the standard of the compression strength for target slurry have to lower and an upper limit of flow was judged to be 230mm

  • PDF

Carbody strength evaluation for a light rail vehicle (경전철 차량 개발을 위한 차체 강도 평가)

  • 김진혁;박근수;박상규
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.466-473
    • /
    • 1998
  • LRV(Light Rail Vehicle) is one of the most useful way for urban transit. HDPIC has designed and manufactured the LRV train set for Manila Line 1 expansion. The LRV is composed of two carbody sections which are coupled by a articulated bogie. The articulated bogie and two motorized bogies have slewing rings in order to improve the curving performance and ride quality. Carbody structures are mainly made of low-carbon stainless steel (STS301L), and the carbody bolsters and draft sills are made of rolled steel for welded structures. The authority's specifications specified the design load conditions and weight limits. Design load conditions are vertical load, compressive load and diagonal jacking, and the maximum axle load is 10.7 ton. In order to meet those requirements, the stiffness and strength of carbody structure were predicted using finite element analysis during design stage. The half or full structure is modeled and analyzed with design load conditions, and critical areas are analysed in detail using sub-modeling method. The strength and strength of carbody structure was also verified by the load test. The analysis and test results show a good agreement.

  • PDF

Static and Fatigue Analysis of Bogie Rotating Frame for Light Rail Train (경량전철 대차 선회프레임의 정적강도와 피로특성 분석)

  • 구정서;조현직;송달호
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.253-260
    • /
    • 2001
  • Rotating bogie frame will be used in the bogie for the Light Rail Train being developed. In development of the bogie, analyzed were the structural strength and fatigue characteristics of the rotating bogie frame. Defined load cases were applied for the analysis. No part of the rotating bogie frame is subjected to stress beyond the fatigue endurance limits of the material used when grinding the weldment of the lower plate link bend. It is concluded that the rotating bogie frame is considered safe in the view of the structural strength.

  • PDF

A Fundamental Study on the Properties of Artifitial Light Weight Aggregate Concrete Blending with the Micro Powders of Mudstone (이암미분말을 혼합한 인공경량골재 콘크리트의 성질에 관한 기초적 연구)

  • 안상건;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.29-34
    • /
    • 1992
  • In this experimental study, we aimed at the improvement of compressive strength of artifitial light weight aggregate concrete by using the micro powders of mudstone for concrete admixture. By it's result, there was about 10% increase of compressive strength in concrete adding the 10% amounts of powders for cement contents than that of plain concrete.

  • PDF

Direct and indirect bonding of wire retainers to bovine enamel using three resin systems: shear bond strength comparisons (부착 유지장치의 직, 간접 부착법에 따른 전단 접착력 비교)

  • Kwon, Tae-Yub;Meina, Hu;Antoszewska, Joana;Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.41 no.6
    • /
    • pp.447-453
    • /
    • 2011
  • Objective: We compared the shear bond strength (SBS) of lingual retainers bonded to bovine enamel with three different resins using direct and indirect methods. Methods: Both ends of pre-fabricated twisted ligature wires were bonded to bovine enamel surfaces using Light-Core, Tetric N-Flow, or Transbond XT. Phosphoric acid-etched enamel surfaces were primed with One-Step prior to bonding with Light-Core or Tetric N-Flow. Transbond XT primer was used prior to bonding with Transbond XT. After 24 hours in water at $37^{\circ}C$, we performed SBS tests on the samples. We also assigned adhesive remnant index (ARI) scores after debonding and predicted the clinical performance of materials and bonding techniques from Weibull analyses. Results: Direct bonding produced significantly higher SBS values than indirect bonding for all materials. The SBS for Light-Core was significantly higher than that for Tetric N-Flow, and there was no significant difference between the direct bonding SBS of Transbond XT and that of Light-Core. Weibull analysis indicated Light-Core performed better than other indirectly bonded resins. Conclusions: When the SBS of a wire retainer is of primary concern, direct bonding methods are superior to indirect bonding methods. Light-Core may perform better than Transbond XT or Tetric N-Flow when bonded indirectly.

Dentin bond strength of bonding agents cured with Light Emitting Diode (LIGHT EMITTING DIODE로 광조사한 상아질 접착제의 상아질 전단접착강도와 중합률에 관한 연구)

  • Kim Sun-Young;Lee In-Bog;Cho Byeong-Hoon;Son Ho-Hyun;Kim Mi-Ja;Seok Chang-In;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.504-514
    • /
    • 2004
  • This study compared the dentin shear bond strengths of currently used dentin bonding agents that were irradiated with an LED (Elipar FreeLight, 3M-ESPE) and a halogen light (VIP, BISCO). The optical characteristics of two light curing units were evaluated. Extracted human third molars were prepared to expose the occlusal dentin and the bonding procedures were performed under the irradiation with each light curing unit. The dentin bonding agents used in this study were Scotchbond Multipurpose (3M ESPE), Single Bond (3M ESPE), One-Step (Bisco), Clearfil SE bond (Kuraray), and Adper Prompt (3M ESPE), The shear test was performed by employing the design of a chisel-on-iris supported with a Teflon wall. The fractured dentin surface was observed with SEM to determine the failure mode. The spectral appearance of the LED light curing unit was different from that of the halogen light curing unit in terms of maximum peak and distribution. The LED LCU (maximum peak in 465 nm) shows a narrower spectral distribution than the halogen LCU (maximum peak in 487 nm). With the exception of the Clearfil SE bond (P < 0.05), each 4 dentin bonding agents showed no significant difference between the halogen light-cured group and the LED light-cured group in the mean shear bond strength (P > 0.05). The results can be explained by the strong correlation between the absorption spectrum of camphoroquinone and the narrow emission spectrum of LED.

A Parameter Study on the Shear Failure Behavior of Post-installed Set Anchor for Light Load (저하중용 후설치 세트앵커의 전단파괴거동에 관한 매개변수 연구)

  • Um, Chan-Hee;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.55-63
    • /
    • 2015
  • Post-installed concrete set anchors are installed after the concrete hardened. These anchors increasing usage in development of construction equipment and flexible construction. The anchor loaded in shearing exhibits various failure modes such as steel failure, concrete failure, concrete pryout, depending on the shear strength of steel, the strength of concrete, edge distance and anchor interval, etc,. In this study, the objective is to investigate the effects of the variations like anchor embedment depth, edge distance and concrete strength on experimental and finite element analysis of shear failure behavior of post-installed concrete set anchor for light load embedded in concrete. The results of embedment depth experiments show that concrete strength has much affection on the shallow embedment depth. Concrete strength has no much affection with anchor interval and edge distance parameter and both experimental results occurred same failure mode. By comparing the experimental results that occurred steel failure mode show that as strong as concrete strength are the displacement results are small.