• Title/Summary/Keyword: lifetime data distribution

Search Result 190, Processing Time 0.026 seconds

Some Partial Orders Describing Positive Aging

  • Choi, Jeen-Kap;Kim, Sang-Lyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.119-127
    • /
    • 1996
  • The concepy of positive aging describles the adverse effects of age on the lifetime of units. Various aspects of this concepts are described in terms of conditional probability distribution of residual life times, failure rates, equilibrium distributions, etc. In this paper we will consider some partial ordering relations of life distribution under residual life functions and equilibrium distributions.

  • PDF

A Comparison of Reliability Factors of Software Reliability Model Following Lifetime Distribution Dependent on Pareto and Erlang Shape Parameters (파레토 및 어랑 형상모수에 의존한 수명분포를 따르는 소프트웨어 신뢰성 모형에 대한 신뢰도 특성요인 비교 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.2
    • /
    • pp.71-80
    • /
    • 2017
  • Software reliability is one of the most elementary and important problems in software development In order to find the software failure occurrence, the instantaneous failure rate function in the Poisson process can have a constant, incremental or decreasing tendency independently of the failure time. In this study, we compared the reliability performance of the software reliability model using the parameters of Pareto life distribution with the intensity decreasing pattern and the shape parameter of Erlang life distribution with the intensity increasing and decreasing pattern in the software product testing. In order to identify the software failure environment, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, we compare and evaluate software reliability by applying software failure time data. The reliability of the Erlang and Pareto life models is shown to be higher than that of the Pareto lifetime distribution model when the shape parameter is higher and the Erlang model is more reliable when the shape parameter is higher. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing basic knowledge using software failure analysis.

A Note on Estimating Parameters in The Two-Parameter Weibull Distribution

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1091-1102
    • /
    • 2003
  • The Weibull variate is commonly used as a lifetime distribution in reliability applications. Estimation of parameters is revisited in the two-parameter Weibull distribution. The method of product spacings, the method of quantile estimates and the method of least squares are applied to this distribution. A comparative study between a simple minded estimate, the maximum likelihood estimate, the product spacings estimate, the quantile estimate, the least squares estimate, and the adjusted least squares estimate is presented.

  • PDF

CUSUM charts for monitoring type I right-censored lognormal lifetime data (제1형 우측중도절단된 로그정규 수명 자료를 모니터링하는 누적합 관리도)

  • Choi, Minjae;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.735-744
    • /
    • 2021
  • Maintaining the lifetime of a product is one of the objectives of quality control. In real processes, most samples are constructed with censored data because, in many situations, we cannot measure the lifetime of all samples due to time or cost problems. In this paper, we propose two cumulative sum (CUSUM) control charting procedures to monitor the mean of type I right-censored lognormal lifetime data. One of them is based on the likelihood ratio, and the other is based on the binomial distribution. Through simulations, we evaluate the performance of the two proposed procedures by comparing the average run length (ARL). The overall performance of the likelihood ratio CUSUM chart is better, especially this chart performs better when the censoring rate is low and the shape parameter value is small. Conversely, the binomial CUSUM chart is shown to perform better when the censoring rate is high, the shape parameter value is large, and the change in the mean is small.

An Energy Awareness Congestion Control Scheme in Wireless Sensor Networks

  • Kim, Mi-Kyoung;Park, Jun-Ho;Seong, Dong-Ook;Kwak, Dong-Won;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • For energy-efficiency in Wireless Sensor Networks (WSNs), when a sensor node detects events, the sensing period for collecting the detailed information is likely to be short. The lifetime of WSNs decreases because communication modules are used excessively on a specific sensor node. To solve this problem, the TARP decentralized network packets to neighbor nodes. It considered the average data transmission rate as well as the data distribution. However, since the existing scheme did not consider the energy consumption of a node in WSNs, its network lifetime is reduced. In this paper, we propose an energy awareness congestion control scheme based on genetic algorithms in WSNs. The proposed scheme considers the remaining amount of energy and the transmission rate on a single node in fitness evaluation. Since the proposed scheme performs an efficient congestion control, it extends the network lifetime. In order to show the superiority of the proposed scheme, we compare it with the existing scheme through performance evaluation. It is shown that the proposed scheme enhances the data fairness and improves the network lifetime by about 27% on average over the existing scheme.

THE LOGARITHMIC KUMARASWAMY FAMILY OF DISTRIBUTIONS: PROPERTIES AND APPLICATIONS

  • Ahmad, Zubair
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1335-1352
    • /
    • 2019
  • In this article, a new family of lifetime distributions by adding two additional parameters is introduced. The new family is called, the logarithmic Kumaraswamy family of distributions. For the proposed family, explicit expressions for some mathematical properties are derived. Maximum likelihood estimates of the model parameters are also obtained. This method is applied to develop a new lifetime model, called the logarithmic Kumaraswamy Weibull distribution. The proposed model is very flexible and capable of modeling data with increasing, decreasing, unimodal or modified unimodal shaped hazard rates. To access the behavior of the model parameters, a simulation study has been carried out. Finally, the potentiality of the new method is proved via analyzing two real data sets.

A Study of Storage Life Estimation for Delay System in the Fuse of 81mm Illuminating Projectile (81미리 조명탄용 신관 KM84A1E1 지연제의 저장수명 예측 연구)

  • Chang, Il-Ho;Kim, Ji-Hoon;Lee, Woo-Chul;Back, Seung-Jun;Son, Young-Kap
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.270-277
    • /
    • 2012
  • Purpose: In this paper, storage lifetime of delay system in the fuse of 81MM illuminating projectile is estimated. Methods: Accelerated degradation testings of tungsten delay system using both temperature and humidity stresses were performed, and then delay time increase of the systems were analyzed as degradation data based on distribution-based degradation processes. Results: The estimated storage lifetime of detonator is between 11.8 years and 17.6 years with each stress-life relationship. Conclusion: Comparing with field data, storage lifetime of 90% reliability is about 12 years.

Compound Linear Test Plan for 3-level Constant Stress Tests

  • Kim, In-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.945-952
    • /
    • 2006
  • Several accelerated life test plans use tests at only two levels of stress and thus, have practical limitations. They highly depend upon the assumption of a linear relationship between stress and time-to-failure and use only two extreme stresses that can cause irrelevant failure modes. Thus 3-level stress plans are preferable. When the lifetime distribution of test unit is exponential with mean lifetime $\theta_i$ at stress $x_i$, i=0, 1, 2, 3, we derive the optimum quadratic plan under the assumption that a quadratic relationship exists between stress and log(mean lifetime), and propose the compound linear plans, as an alternative to the optimum quadratic plan. The proposed compound linear plan is better than two other compromise plans for constant stress testing and nearly as good as the optimum quadratic plan, and has the advantage of simplicity.

  • PDF

A Study on the Life Characteristic of Rodless Cylinder (로드리스 실린더의 수명 특성에 관한 연구)

  • Lee, C.S.;Lim, J.H.;Kang, S.B.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • Pneumatic cylinders are classified into rod-type pneumatic cylinders and rodless pneumatic cylinders depending on the presence of the rod. Rodless cylinders have a constant area and have no deflection. Rodless cylinders are widely used in automatic systems requiring high-speed performance and high-precision transportation. However, the research of the pneumatic cylinder has been focused on the structure and life characteristics. In this research, aging characteristics and shape parameter analysis which are related to the lifetime were investigated. By conducting the lifetime tests with two different materials for the transfer plate, the failure mode and lifetime characteristics were analyzed. By the Anderson-Darling (A-D) verification based on the complete data set, the analysis results of lifetime distribution, shape parameter, and scale parameter were provided.

Estimating the Probability of Perfect PM in the Brown-Proschan Imperfect PM Model (Brown-Proschan 불완전 PM 모형에서 완전 PM 확률의 추정)

  • 임태진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.151-165
    • /
    • 1997
  • We propose a method for estimating the probability of perfect PM from successive failure times of a repairable system. The system under study is maintained preventively at periodic times, and it undergoes minimal repair at failure. We consider Brown-Proschan imperfect PM model in which the system is restored to a condition as good as new with probability P and is otherwise restored to its condition just prior to failure. We discuss the identifiability problem when the PM modes are not recorded. The expectation-maximization principle is employed to handle the incomplete data problem. We assume that the lifetime distribution belongs to a parametric family with increasing failure rate. For the two parameter Weibull lifetime distribution, we propose a specific algorithm for finding the maximum lifelihood estimates of the reliability parameters : the probability of perfect PM (P), as well as the distribution parameters. The estimation method will provide useful results for maintaining real systems.

  • PDF