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THE LOGARITHMIC KUMARASWAMY FAMILY OF

DISTRIBUTIONS: PROPERTIES AND APPLICATIONS
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Abstract. In this article, a new family of lifetime distributions by adding

two additional parameters is introduced. The new family is called, the log-
arithmic Kumaraswamy family of distributions. For the proposed family,

explicit expressions for some mathematical properties are derived. Maxi-
mum likelihood estimates of the model parameters are also obtained. This

method is applied to develop a new lifetime model, called the logarithmic

Kumaraswamy Weibull distribution. The proposed model is very flexible
and capable of modeling data with increasing, decreasing, unimodal or

modified unimodal shaped hazard rates. To access the behavior of the

model parameters, a simulation study has been carried out. Finally, the
potentiality of the new method is proved via analyzing two real data sets.

1. Introduction

Broadly speaking, the use of statistical distributions are very important in
predicting and describing real-world phenomena. The quality of the results
heavily depend on the specification of the right model for the data under con-
sideration. Statistical distributions such as Rayleigh, exponential, gamma, beta
or Weibull distributions are frequently used in modeling lifetime data.

However, these distributions have certain limitations. For example, the ex-
ponential distribution offers data modeling with constant failure rate only, the
Rayleigh distribution is useful in data modeling having the increasing failure
rate. Whereas, the gamma and beta distributions do not have closed form solu-
tions of the cumulative distribution functions causing difficulties in estimating
the parameters. Among these distributions, the Weibull model is the most
prominent one, and offer data modeling with monotonic (increasing, decreas-
ing or constant) failure rates. But, unfortunately, the Weibull model is not
suitable to use in data modeling having non-monotonic (unimodal, modified
unimodal or bathtub) failure rates. Therefore, to improve the characteristics
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of these traditional distributions, researchers have been developing various ex-
tensions and modified forms of these distributions.

However, in the recent literature, researchers have shown a deep interest
in proposing new families of distributions. The literature is filled with such
methods that are quite rich and still growing rapidly. This has been done
through many different approaches.

An interesting idea of extending a distribution, known in the literature by
exponentiation, is proposed by Mudholkar and Srivastava [13]. The cumulative
distribution function (cdf) of the exponentiated random variable is given by

(1) GE (x) = F (x; ξ)
a
, a, ξ > 0, x ∈ R,

where, ξ is a parameter vector of the baseline distribution F (x; ξ). Using (1),
several lifetime distributions have been proposed. For example, [3], [7], [8], [11],
[14] and [15], among others.

Another prominent approach in this domain, is Marshall-Olkin family of
distributions proposed by Marshall and Olkin [12] defined by the cdf

(2) GMO (x) =
F (x; ξ)

1− (1− σ) (1− F (x; ξ))
, σ, ξ > 0, x ∈ R.

Using (2), Marshall and Olkin [12] studied the Marshall Olkin exponential
(MOE) and Marshall Olkin Weibull (MOW) distributions. Since then, using
(2), numerous life distributions have been studied. For example, see [5], [6],
[16] and [17].

Taking inspiration from [9], the Kumaraswamy-G class of distributions ap-
peared in [2] whose cdf is given by

(3) GKuG (x) = 1−
(

1− F (x; ξ)
β
)γ
, x ∈ R,

where, β, γ> 0 are two additional parameters whose role is to introduce skew-
ness and to vary tail weights.

Recently, [18] proposed the exponentiated Kumaraswamy G-logarithmic
(EKuG-L) class of distributions given by

(4) G (x) = 1−
log
{

1− (1− p)
[
1−GKuG (x)

θ
]}

log (p)
, x ∈ R,

where θ > 0 and p ∈ (0, 1) . For θ = 1, the cdf of the EKuG-L reduces to the
new Kumaraswamy-G-logarithmic (KG-L) family with cdf given by

G (x) = 1− log {1− (1− p) [1−GKuG (x)]}
log (p)

, x ∈ R,

where ξ > 0 and p ∈ (0, 1). In the EKuG-L and KG-L families, the parametric
space of p is restricted to (0, 1) . Due to the restricted parametric space of p,
these two families may not be flexible enough to counter complex forms of
data. Furthermore, the EKuG-L family has two additional parameters. Due
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to the higher number of parameters, the estimation of parameters as well as
computation of many distributional characteristics becomes very difficult.

Therefore, in this paper, a more flexible class of distributions, called the
logarithmic Kumaraswamy (LKu) family is proposed by reparametrizing (4).
The new family is introduced by keeping constant θ = 1 (to reduce the number
of parameters) and reparametrizing p = eα (to relax the upper limit of the
parametric space of p), where α > 0. Due to unrestricted upper bound, the
proposed distribution would be quite flexible in modeling complex forms of
data.

Thus the motivation for introducing this new model is to relax the boundary
conditions of the parametric values to provide more flexibility in the shape of
the hazard rate function than the classical monotone behavior and to improve
description which call for complexity by adding the parameters in Kumara-
swamy-G class of distributions which gives us more information about the
behaviour of the hazard rate function in the tail end, and how skewed the
distribution is.

The logarithmic Kumaraswamy (LKu) distributions is defined by cdf

(5) G (x) = 1−
log
[
eα −

{
1−

(
1− F (x; ξ)

β
)γ}

(eα − 1)
]

α
, x ∈ R,

where, α, γ, β, ξ > 0, and F (x; ξ) is cdf of the baseline random variable de-
pending on the vector parameter ξ. The probability density function (pdf), sf
and hazard rate function (hrf) of the LKu family are given (6)-(8), respectively
by

(6) g (x) =
γβ (eα − 1) f (x; ξ)F (x; ξ)

β−1
(

1− F (x; ξ)
β
)γ−1

α
[
eα −

{
1−

(
1− F (x; ξ)

β
)γ}

(eα − 1)
] , x ∈ R,

(7) S (x) =
log
[
eα −

{
1−

(
1− F (x; ξ)

β
)γ}

(eα − 1)
]

α
, x ∈ R,

(8)

h (x) =
γβ (eα − 1) f (x; ξ)F (x; ξ)

β−1
(

1− F (x; ξ)
β
)γ−1

[
log
[
eα −

{
1−

(
1− F (x; ξ)

β
)γ}

(eα − 1)
]]

× 1[
eα −

{
1−

(
1− F (x; ξ)

β
)γ}

(eα − 1)
] , x ∈ R.

The new pdf is most tractable when F (x, ξ) and f (x, ξ) of the baseline
variable have simple analytic expressions. Henceforth, a random variable X
with pdf (6) is denoted byX ∼ LKu (x; Θ), where Θ = (α, γ, β, ξ) . The key
motivations for using the LKu family in practice are the following:
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(1) A very simple and convenient method of adding additional parameters
to modify the existing distributions.

(2) To improve the characteristics and flexibility of the existing distribu-
tions.

(3) To introduce the extended version of the baseline distribution having
closed forms for cdf, sf as well as hrf.

(4) To provide better fits than the other modified models.
(5) To introduce a distribution with increasing, decreasing, unimodal and

increasing-decreasing-increasing (also called modified unimodal) shaped
hazard functions.

This rest of this article is organized in the following way. Shapes of the
density and hazard functions are discussed in Section 2. In Section 3, a special
sub-model of the proposed family is discussed. Some mathematical properties
are obtained in Section 4. Maximum likelihood estimates of the model param-
eters are obtained in Section 5. A simulation study is conducted in Section 6.
Section 7, is devoted to analyze two real life applications. Finally, concluding
remarks are provided in Section 8.

2. The shape of the density and Hazard function

Here, we give a general description of the shape of the distribution analyti-
cally. Consider (6) the critical points can be obtained by solving the equation

∂ ln g (x; Θ)

∂x
= 0.

The above equation may have more than one root. If x = x0 is a root of the
above equation, then it corresponds to a local maximum if

∂2 ln g (x; Θ)

∂x2
< 0,

and a local minimum if
∂2 ln g (x; Θ)

∂x2
> 0,

and a point of inflection if

∂2 ln g (x; Θ)

∂x2
= 0.

In a similar way the shape of the hazard function can also be described
analytically.

3. Sub-model description

In this section, a special sub-model of the new family, called the logarithmic
Kumaraswamy Weibull (LKu-W) distribution is introduced. Let F (x) be the

cdf of the one parameter Weibull model given by F (x) = 1−e−xθ , x, θ > 0, with
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pdf f (x) given by f(x) = θxθ−1e−x
θ

. Then, the cdf of the LKu-W distribution
has the following expression

(9) G (x; Θ) = 1−
log

[
eα −

{
1−

(
1−

(
1− e−xθ

)β)γ}
(eα − 1)

]
α

, x > 0,

where, α, γ, β, θ > 0. The pdf, sf and hrf of the LKu-W distribution are given
(10)-(12), respectively by

(10) g (x; Θ) =
βγθ(eα−1)xθ−1e−x

θ
(
1−e−x

θ
)β−1

(
1−
(
1−e−x

θ
)β)γ−1

α
[
eα−

{
1−
(
1−(1−e−xθ )

β
)γ}

(eα−1)
] , x > 0,

(11) S (x; Θ) =
log

[
eα−

{
1−
(
1−
(
1−e−x

θ
)β)γ}

(eα−1)
]

α , x > 0,

(12)
h (x; Θ) =

βγθ(eα−1)xθ−1e−x
θ
(
1−e−x

θ
)β−1

(
1−
(
1−e−x

θ
)β)γ−1

[
log
[
eα−

{
1−
(
1−(1−e−xθ )

β
)γ}

(eα−1)
]]

× 1[
eα−

{
1−
(
1−(1−e−xθ )

β
)γ}

(eα−1)
] , x > 0.

For β = 1 and different values of α, γ and θ, plots of the pdf and hrf of the
LKu-W distribution are sketched in Figures 1 and 2, respectively.

Figure 1. Graphical sketching of the LKu-W density function
for some parameter values.

4. Basic mathematical properties

In this section, some statistical properties for the proposed family are de-
rived.
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Figure 2. Graphical sketching of the LKu-W hazard rate
function for some parameter values.

4.1. Quantile function

Let X be the LKu random variable with pdf (6), the quantile function of X,
say Q(u) is

(13) Q (u) = F−1

1−
{

1−
(
eα − eα(1−u)

(eα − 1)

)}1/γ


1/β

,

where, u has the uniform distribution on the interval (0,1) and F−1(·) is the
inverse function of F (·).

4.2. Moments

Moments are very important and play an essential role in statistical analysis,
especially in the applications. It helps to capture the important features and
characteristics of the distribution (e.g., central tendency, dispersion, skewness
and kurtosis). The rth moment of the LKu family of distributions is given by

(14) µ/r =

∫ ∞
−∞

xrg (x; Θ) dx,

using (6) in (14), one may have

(15)

µ/r =
βγ

α

∞∑
i,j,k=0

(−1)
j+k

(
i
j

)(
γ (j + 1)− 1

k

)

×
(
eα − 1

eα

)i+1

ηr,β(k+1)−1,
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where,

ηr,β(k+1)−1 =

∫ ∞
−∞

xrf (x; ξ)F (x; ξ)
β(k+1)−1

dx.

Furthermore, a general expression for moment generating function (mgf) of
the LKu random variable X is

(16)

Mx (t) =
βγ

r!α

∞∑
i,j,k=0

(−1)
j+k

tr
(
i
j

)(
γ (j + 1)− 1

k

)

×
(
eα − 1

eα

)i+1

ηr,β(k+1)−1.

4.3. Residual & reverse residual life

The residual life offer wider applications in reliability theory and risk man-
agement. The residual lifetime of X denoted by R(t) is derived as

R(t) (x) =
S (x+ t)

S (t)
,

R(t) (x) =
log
[
eα −

{
1−

(
1− F (x+ t; ξ)

β
)γ}

(eα − 1)
]

log
[
eα −

{
1−

(
1− F (t; ξ)

β
)γ}

(eα − 1)
] .

Additionally, the reverse residual life of the LKu random variable denoted by
R̄(t) can be derived as

R̄(t) =
S (x− t)
S (t)

,

R̄(t) (x) =
log
[
eα −

{
1−

(
1− F (x− t; ξ)β

)γ}
(eα − 1)

]
log
[
eα −

{
1−

(
1− F (t; ξ)

β
)γ}

(eα − 1)
] .

4.4. Order statistics

Order statistics are among the essential tools in inferencial and non-para-
metric statistics. The applications of these statistics appears in the study of
reliability and life testing. Consider X1, X2, . . . , Xk be a random sample of
size k taken independently from LKu distribution. Let X1:k, X2:k, . . . , Xk:k

be the corresponding order statistics. Then, from [4], the density of Xr:k for
(r = 1, 2, . . . , k) is given by

(17) gr:k (x) =
g (x; Θ)

B (r, k − r + 1)

k−r∑
i=0

(
k − r
i

)
(−1)

i
[G (x; Θ)]

i+r−1
.

The expression (22) provides the density of the Xr:k.
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5. Estimation

In this section, the estimation of unknown parameters of LKu family via
the method of maximum likelihood is discussed. Let X1, X2, . . . , Xk be a ran-
dom sample from LKu family with parameters (α, γ, β, θ). The log-likelihood
function of this sample is

(18)

logL (x; Θ) = − k logα+ k log γ + k log β + k log (eα − 1)

+

k∑
i=1

log [f (xi; ξ)] + (β − 1)

k∑
i=1

log [F (xi; ξ)]

−
k∑
i=1

log
[
eα −

{
1−

(
1− F (xi; ξ)

β
)γ}

(eα − 1)
]

+ (γ − 1)

k∑
i=1

log
[
1− F (xi; ξ)

β
]
.

Obtaining the partial derivatives of (18), one may get

∂

∂α
logL (x; Θ) = −

k∑
i=1

eα −
{

1−
(

1− F (xi; ξ)
β
)γ}

eα[
eα −

{
1−

(
1− F (xi; ξ)

β
)γ}

(eα − 1)
]

− k

α
+

keα

eα − 1
,(19)

∂

∂β
logL (x; Θ) =

k∑
i=1

log [F (xi; ξ)]− (γ − 1)

k∑
i=1

[log {F (xi; ξ)}]F (xi; ξ)
β

1− F (xi; ξ)
β

+
k

β
−

k∑
i=1

(1− wβ,ξ)γ (eα − 1)

eα −
{

1−
(

1− F (xi; ξ)
β
)γ}

(eα − 1)
,(20)

∂

∂γ
logL (x; Θ) =

k

γ
−

k∑
i=1

(1− wβ,ξ)γ (eα − 1)

eα −
{

1−
(

1− F (xi; ξ)
β
)γ}

(eα − 1)

+

k∑
i=1

log
[
1− F (xi; ξ)

β
]
,(21)

∂

∂ξ
logL (x; Θ) = β (γ − 1)

k∑
i=1

F (xi; ξ)
β−1

(∂F (xi; ξ) /∂ξ)

1− F (xi; ξ)
β

k∑
i=1

∂f (xi; ξ) /∂ξ

f (xi; ξ)
+ (β − 1)

k∑
i=1

∂F (xi; ξ) /∂ξ

F (xi; ξ)
(22)
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−
k∑
i=1

(1− wβ,ξ)γ (eα − 1)

eα −
{

1−
(

1− F (xi; ξ)
β
)γ}

(eα − 1)
,

where wβ,ξ =
(

1− F (xi; ξ)
β
)

. Setting ∂
∂α logL (x; Θ), ∂

∂β logL (x; Θ),
∂
∂γ logL (x; Θ) and ∂

∂ξ logL (x; Θ) equal to zero and solving numerically these

expressions simultaneously yields the maximum likelihood estimates of (α, γ, β,
ξ).

6. Simulation study

In order to assess the performances of the maximum likelihood estimators,
a small simulation study is carried out. The process is carried out as follow:

(1) The number of Monte Carlo replications was made 1000 times each
with sample sizes n = 30, 50 and 100.

(2) Initial values for the parameters are selected as given in Table 1.
(3) Formulas used for calculating Bias and MSE are given by Bias (α̂) =

1
1000

∑1000
i=1 (α̂− α) and MSE (α̂) = 1

1000

∑1000
i=1 (α̂− α)

2
, respectively.

(4) Step (iii) is also repeated for the other parameters (γ, β, θ).

The empirical results are given in Tables 1 and 2.

Table 1. The parameter estimation from LKu-W distribution
using MLE.

n Par Init MLE Bias MSE Init MLE Bias MSE
α 0.5 0.5145 0.0130 0.0072 0.75 0.7701 0.0209 0.0163

30 γ 0.5 0.5266 0.0254 0.0186 0.5 0.5231 0.0231 0.0160
β 0.5 0.5146 0.0147 0.0081 0.5 0.5150 0.0150 0.0082
θ 0.5 0.5329 0.0264 0.0182 0.5 0.5208 0.0228 0.0160
α 0.5 0.5070 0.0070 0.0043 0.75 0.7581 0.0109 0.0085

50 γ 0.5 0.5218 0.0221 0.0108 0.5 0.5119 0.0113 0.0098
β 0.5 0.5073 0.0079 0.0050 0.5 0.5070 0.0076 0.0046
θ 0.5 0.5209 0.0239 0.0103 0.5 0.5091 0.0108 0.0089
α 0.5 0.5017 0.0028 0.0019 0.75 0.7591 0.0099 0.0040

100 γ 0.5 0.5125 0.0132 0.0049 0.5 0.5043 0.0051 0.0043
β 0.5 0.5023 0.0027 0.0035 0.5 0.5068 0.0072 0.0022
θ 0.5 0.5189 0.0132 0.0050 0.5 0.5038 0.0095 0.0040

7. Applications

To prove the flexibility of the proposed family, two applications to real data
sets are analyzed. The goodness of fits of the LKu-W distribution have been
compared with the other lifetime models such as exponentiated Weibull (EW),
Marshall-Olkin Weibull (MOW) and Kumaraswamy Weibull (Ku-W) distribu-
tions.
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Table 2. The parameter estimation from LKu-W distribution
using MLE.

n Par Init MLE Bias MSE Init MLE Bias MSE
α 1.5 1.5487 0.0488 0.0668 1.5 1.5586 0.0587 0.1208

30 γ 0.5 0.5770 0.0772 0.0413 0.5 0.5127 0.0129 0.0149
β 0.5 0.5181 0.0183 0.0086 1.5 1.5086 0.0086 0.0201
θ 0.5 0.5734 0.0767 0.0409 0.5 0.5122 0.0124 0.0143
α 1.5 1.5270 0.0277 0.0436 1.5 1.5223 0.0220 0.0617

50 γ 0.5 0.5687 0.0691 0.0244 0.5 0.5044 0.0042 0.0088
β 0.5 0.5106 0.0102 0.0058 1.5 1.4998 -0.0003 0.0107
θ 0.5 0.5678 0.0679 0.0241 0.5 0.5034 0.0039 0.0079
α 1.5 1.5171 0.0170 0.0184 1.5 1.5169 0.0169 0.0291

100 γ 0.5 0.5534 0.0533 0.0119 0.5 0.4930 -0.0047 0.0039
β 0.5 0.5062 0.0056 0.0022 1.5 1.5019 0.0020 0.0052
θ 0.5 0.5525 0.0528 0.0237 0.5 0.4928 0.0032 0.0034

The distribution functions of the competing models are as:

(1) The exponentiated Weibull is given by

G (x) =
(

1− e−ηx
θ
)a
, x, a, η, θ > 0.

(2) The Marshall-Olkin Weibull is

G (x) =

(
1− e−ηxθ

)
1− (1− σ)

(
1−

(
1− e−ηxθ

)) , x, σ, η, θ > 0.

(3) The Kumaraswsamy Weibull is given by

G (x) = 1−
(

1−
(

1− e−ηx
θ
)β)γ

, x, β, γ, η, θ > 0.

The analytical measures of goodness of fit including the Akaike informa-
tion criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian
information criterion (BIC), Hannan-Quinn information criterion (HQIC), Kol-
mogoro Smirnov (KS), Cramer–von Mises (CM) and Anderson-Darling (AD)
statistics are considered to compare the proposed method with the other fitted
models. In general, a model with smaller values of these analytical measure
indicate better fit to the data. All the required computations have been carried
out in the R-language using “Nelder-Mead” algorithm.

Data 1: The data set represents survival times of guinea pigs injected with
the different amount of tubercle bacilli studied by [1]. The MLEs and the
considered statistics are shown in Tables 3 and 4, respectively. Corresponding
to data 1, the estimated pdf and cdf of the proposed model are plotted in Figure
3, pp-plot and Kaplan Meier survival plot are presented in Figure 4, while, the
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scale TTT-transform plot and estimated hazard rate plot are sketched in Figure
5.

Table 3. MLEs with their standard errors in brackets for data 1.

Dist. α̂ η̂ θ̂ σ̂ γ̂ β̂
LKu-
W

3.943
(0.2901)

1.971
(0.3104)

0.075
(0.3509)

0.962
(0.2967)

MOW 0.210
(0.0255)

0.698
(0.3153)

1.770
(0.0771)

EW 0.708
(0.3530)

1.171
(0.2830)

1.994
(0.9831)

Ku-W 0.641
(0.5713)

1.062
(0.6322)

1.432
(1.0107)

2.310
(2.4604)

Table 4. The analytical measures of the fitted distributions
using data 1.

Dist. KS CM AD AIC BIC CIAC HQIC
LKu-W 0.095 0.090 0.591 209.70 216.53 210.05 212.42
MOW 0.106 0.146 0.906 213.45 220.28 213.80 216.17
EW 0.100 0.110 0.730 211.62 218.45 211.97 214.341

Ku-W 0.097 0.107 0.714 213.63 222.73 214.22 217.25

Figure 3. Plots of the estimated pdf and cdf of the LKu-W
distribution for data 1.



1346 Z. AHMAD

Figure 4. PP and Kaplan-Meir survival plots of the LKu-W
distribution for data 1.

Figure 5. Scale TTT-transform plot and estimated hazard
rate plot of the LKu-W distribution for data 1.

Data 2: The second data set representing the remission times (in months)
of a random sample of 128 bladder cancer patients taken from [10].The MLEs
and the considered statistics are shown in Tables 5 and 6, respectively. Cor-
responding to data 2, the estimated pdf and cdf of the proposed model are
plotted in Figure 6, pp-plot and Kaplan Meier survival plot are presented in
Figure 7, while the scale TTT-transform plot and estimated hazard rate plot
sketched in Figure 8.
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Table 5. MLEs with their standard errors in brackets for data 1.

Dist. α̂ η̂ θ̂ σ̂ γ̂ β̂
LKu-
W

4.265
(0.8934)

1.268
(0.7023)

0.016
(0.7023)

0.893
(0.6980)

MOW 0.877
(0.5205)

0.564
(0.1308)

11.829
(1.286)

EW 0.720
(0.5492)

0.541
(0.1883)

4.332
(3.5347)

Ku-W 0.487
(0.4800)

0.520
(0.9073)

1.988
(1.2719)

3.712
(1.9700)

Table 6. The analytical measures of the fitted distributions
using data 2.

Dist. KS CM AD AIC BIC CIAC HQIC
LKu-W 0.037 0.038 0.255 826.37 834.93 826.57 829.85
MOW 0.075 0.150 0.884 834.98 843.54 835.18 838.46
EW 0.046 0.046 0.324 828.21 836.77 828.41 831.69

Ku-W 0.041 0.040 0.271 829.20 840.61 829.53 833.84

Figure 6. Plots of the estimated pdf and cdf of the LKu-W
distribution for data 2.

8. Concluding remarks

In this article, a new method is adopted to extend the existing distributions.
This effort leads to a new family of life distributions, called the LKu family of
distributions. General expressions for some of the mathematical properties of
the new family are investigated. The estimation of the of model parameters
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Figure 7. PP and Kaplan-Meir survival plots of the LKu-W
distribution for data 2.

Figure 8. Scale TTT-transform plot and estimated hazard
rate plot of the LKu-W distribution for data 2.

through maximum likelihood method is discussed.There are certain advantages
of using the proposed method like its cdf has a closed form solution and facilitat-
ing data modeling with monotonic and non-monotonic failure rates. A special
sub-model of the new family, called LKu-Weibulldistribution is considered and
two real applications are analyzed. In simulation study, the consistency and
proficiency of the maximum likelihood estimators of the proposed model are
illustrated. The practical applications of the proposed model reveal better fits
to real-life data than the other well-known existing distributions.
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Appendix

1. Code for computing the analytical results
data=c( Insert the Data Set Here) pdf proposed <-function(par,x)
{
########## Write down the parameters as mentioned below
α= Insert here the estimated value
β= Insert here the estimated value
θ= Insert here the estimated value
γ= Insert here the estimated value
######### Write down the PDF of the Model here
}
cdf proposed <-function(par,x)
{
α= Insert here the estimated value
β= Insert here the estimated value
θ= Insert here the estimated value
γ= Insert here the estimated value
######### Write down the CDF of the Model here
}
set.seed(0)
goodness.fit(pdf=pdf proposed,
cdf=cdf proposed,
starts = c(Set initial values of the parameters here ), data = data,
method=”Nelder-Mead”, domain=c(0,Inf),mle=NULL)

2. Codes for plotting the empirical pdf of the model
x=c( Insert the Data Set Here)
x=sort(x)
########## Write down the parameters of the model and the corre-
sponding estimated values
α= Insert here the estimated value
β= Insert here the estimated value
θ= Insert here the estimated value
γ= Insert here the estimated value
pdf= Write the pdf of the Model here
f=pdf
x=sort(x)
yrange=c(Insert the Range for Y-axis here)
xrange=c(Min value of the data, Max value of the data)
hist(x, freq=FALSE, breaks=10, xlim=xrange, ylim=yrange, ylab=”f(x)”,
xlab=”x”, main=” ”)
par(new=TRUE)
lines(x, f, xlim=xrange, lty=1, ylab=” ”, ylim=yrange, lwd=2,col=”green”,
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xlab=””)
par(new=TRUE)

3. Codes for plotting the empirical cdf of the model
x=c(Insert the Data Set Here)
m=length(x)
########## Write down the parameters of the model and the corre-
sponding estimated values
α= Insert here the estimated value
β= Insert here the estimated value
θ= Insert here the estimated value
γ= Insert here the estimated value
x<-sort(x)
F1<-ecdf(x) #### ecdf stands for the estimated cdf
ecdf<-F1(c(x))
LKucdf<- #### Insert the cdf of the Model here
plot(x ,ecdf, lty=1, lwd=2.5, type=”s”, xlab=”x”, ylab=”F(x)”, ylim=c(0,1),
xlim=c(Min value of the data, Max value of the data), col=”black”)
par(new=TRUE)
plot(x, LKucdf, lty=1, lwd=2.5, type=”l”, xlab=”x”,
ylab=”F(x)”, ylim=c(0,1),
xlim=c(Min value of the data, Max value of the data), col=”green”)
par(new=TRUE)

4. Codes for plotting Kaplan-Meier survival plot of the model
x=c( Insert the Data Set Here)
library(survival)
delta=rep(1,length(x))
x<-sort(x)
km = survfit(Surv(x,delta)˜1)
plot(km, conf.int=FALSE, ylab=”Kaplan-Meier Survival Plot”, xlab=”x”)
########## Write down the parameters of the model and the corre-
sponding estimated values
α= Insert here the estimated value
β= Insert here the estimated value
θ= Insert here the estimated value
γ= Insert here the estimated value
ss <-function(x)
{
########## Write the survival function of the Model here
}
lines(seq(Min value of the data, Max value of the data, length.out=100),
ss(seq(Min value of the data, Max value of the data, length.out=100)),
col=”green”, lwd=2)
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5. Codes for plotting PP-plot of the model
x=c( Insert the Data Set Here)
cdfLku=function(x, a, b, g, t)
{
##### Insert the cdf of the model here
}
##### After that we write the code for PP-plot
x=sort(x)
n=length(x)
##### Emperical Distribution Function
Fn=seq(1,n)/n
plot(Fn, Lku(x, insert the estimated values of the parameters),xlab=”x”,
ylab=”PP Plot”, pch=21, col=”green”, bg=”green”)
abline(0,1)
##### Adding a legend if desired

6. Codes for plotting scaled TTT-transform plot
data=c( Insert the Data Set Here)
ti<-sort(data)
n<-length(ti)
t<-c(1:n)
aux<-0
for(i in 1:n)
{
t[i]<-ti[i]+aux
aux<-t[i]}
r<-c(1:n)
f<-t+(n-r)*ti
s<-sum(ti)
f<-f/s
plot(r/n, f, xlim=c(0,1), ylim=c(0,1), xlab=”x”,
ylab=” Scaled TTT-Transform Plot”, lwd=3, col=”green”)
lines(r/n,f)
x<-c(0,1)
y<-c(0,1)
lines(x,y,lty=2)
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