• Title/Summary/Keyword: level of detector

Search Result 506, Processing Time 0.023 seconds

Performance Analysis of Pulse Positioning Using Adaptive Threshold Detector (ATD)

  • Chang, Jae Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • This paper describes the measurement of pulse positioning (input time) to calculate a time of arrival (TOA) that takes from transmitting a signal from the target of multilateration (MLAT) system to receiving the signal at the receiver. In this regard, this paper analyzes performances of simple threshold method and level adjust system (LAS) method, which is one of the adaptive threshold detector (ATD) methods, among many methods to calculate pulse positioning of signal received at the receiver. To this end, Cramer-rao lower bound (CRLB) with regard to pulse positioning, which was measured when signals transmitted from a transponder mounted at the target were received at the receiver, was induced and then deviation sizes with regard to pulse positioning, which was measured with simple threshold and LAS methods through MATLAB simulations, were compared. Next, problems occurring according to a difference in amplitude of signals inputted to each receiver are described when pulse positioning is measured at multiple receivers located at a different distance from the target as is the case in the MLAT system. Furthermore, LAS method to resolve the problems is explained. Lastly, this study analyzes whether a pulse positioning error occurring due to the signal noise satisfies the requirement (6 nsec. or lower) recommended for the MLAT system when using these two methods.

Closely Spaced Target Detection using Intensity Sorting-based Context Awareness

  • Kim, Sungho;Won, Jin-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1839-1845
    • /
    • 2016
  • Detecting remote targets is important to active protection system (APS) or infrared search and track (IRST) applications. In normal situation, the well-known constant false alarm rate (CFAR) detector works properly. However, decoys in APS or closely spaced targets in IRST degrade the detection capability by increasing background noise level in the CFAR detector. This paper presents a context aware CFAR detector by the intensity sorting and selection of background region to reduce the effect of neighboring targets that lead to incorrect estimation of background statistics. The existence of neighboring targets can be recognized by intensity sorting where neighboring targets usually show highest ranks. The proposed background statistics (mean, standard deviation) estimation method from median local pixels can be aware of the background context and reduce the effects of the neighboring targets, which increase the signal-to-clutter ratio. The experimental results on the synthetic APS sequence, real adjacent target sequence, and remote pedestrian sequence validated that the proposed method produced an enhanced detection rate with the same false alarm rate compared with the hysteresis-CFAR (H-CFAR) detection.

5Gbps CMOS Adaptive Feed-Forward Equalizer Using Phase Detector Output for Backplane Applications (위상 검출기 출력을 이용한 백플레인용 5Gbps CMOS 적응형 피드포워드 이퀄라이저)

  • Lee, Gi-Hyeok;Seong, Chang-Gyeong;Choi, U-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.50-57
    • /
    • 2007
  • A 5Gbps CMOS adaptive feed-forward equalizer designed for backplane applications is described. The equalizer has adaptive feedback circuits to control the compensating gain of the equalizing filter, which uses a phase detector in clock recovery circuit to detect ISI (Inter-Symbol Interference) level. This makes the equalizer operate adaptively for a various channel length of backplane environments.

Multi-Class Multi-Object Tracking in Aerial Images Using Uncertainty Estimation

  • Hyeongchan Ham;Junwon Seo;Junhee Kim;Chungsu Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.115-122
    • /
    • 2024
  • Multi-object tracking (MOT) is a vital component in understanding the surrounding environments. Previous research has demonstrated that MOT can successfully detect and track surrounding objects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to be solved. When an object approaching from a distance is recognized, not only detection and tracking but also classification to determine the level of risk must be performed. However, considering the erroneous classification results obtained from the detection as the track class can lead to performance degradation problems. In this paper, we discuss the limitations of classification in tracking under the classification uncertainty of the detector. To address this problem, a class update module is proposed, which leverages the class uncertainty estimation of the detector to mitigate the classification error of the tracker. We evaluated our approach on the VisDrone-MOT2021 dataset,which includes multi-class and uncertain far-distance object tracking. We show that our method has low certainty at a distant object, and quickly classifies the class as the object approaches and the level of certainty increases.In this manner, our method outperforms previous approaches across different detectors. In particular, the You Only Look Once (YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) in comparison to the previous state-of-the-art method. This intuitive insight improves MOT to track approaching objects from a distance and quickly classify them.

Evaluation of Radon Levels in Various Public-acess Buildings or Underground Facilities, and Their Temporal Variation in Underground Facilities (다중 이용 건물 또는 지하 실내 공간의 용도에 따른 라돈 오염도 비교와 지하 공간의 시간대별 라돈 농도 변화)

  • Choi, Im-Cho;Shin, Seung-Ho;Jo, Wan-Kuen
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.3
    • /
    • pp.203-211
    • /
    • 2009
  • A lesser degree of research is available with respect to indoor radon characteristics associated with occupants' exposure. The present study evaluated the radon levels in several public-access buildings or underground facilities, and their temporal variation in underground facilities. Radon measurements were conducted in 2005 and 2006, utilizing a continuous radon detector. A solid alpha detector (RAD7) was utilized to measure indoor radon levels. The mean radon concentrations obtained from the building or facilities were in a descending order: platforms of Daegu subway line 2, 2005 (32 $Bq/m^3$), hot-air bathroom (14 $Bq/m^3$), basement of office building (14 $Bq/m^3$), underground parking garage (14 $Bq/m^3$), underground shop (12 $Bq/m^3$), nursery (10 $Bq/m^3$), platforms of Daegu subway line 2, 2006 (9.0 $Bq/m^3$), platforms of Daegu subway line 1, 2006 (8.9 $Bq/m^3$), supermarket (7.9 $Bq/m^3$), hospital (7.3 $Bq/m^3$), and second-floor of office building (5.7 $Bq/m^3$). In general, underground-level facilities exhibited higher radon levels as compared with ground-level facilities. It was suggested that ventilation is an important parameter regarding the indoor levels of a subway. There was a decreasing or increasing trend in hourly-radon levels in a subway, whereas no trend were observed in a basement of office building. In addition, the radon levels in the subway lines 1 and 2 varied according to the platforms. The radon levels in the present study were much lower than those of previous studies. The average annual effective dose (AED) of radiation from indoor radon exposure was estimated to be between 0.043 and 0.242 mSv/yr, depending on facility types. These AEDs were substantially lower than the worldwide average AED (2.4 mSv/yr).

A Study on the Improvement of Metal Detector Equipment Standards by Aviation Security Level (항공보안 등급별 금속탐지장비 기준 개선 방안 연구)

  • Ryu, Hanseul;Park, Hanjun;Kim, Yosik;Choi, YongHun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2021
  • The detection sensitivity of a Walk Through Metal Detector (WTMD) currently being developed and operated in Korea differs from one manufacturer to another, making it difficult for them to be used based on Aviation Security level. In addition, the FAA 3-GUN Test approved by the domestic aviation authority for aviation security supervision is a single test object. There is no Operational Test Piece (OTP) consisting of multiple test objects for the operation of aviation security for a WTMD. This paper, the detection sensitivity of a WTMD applied by a commercial OTP was measured and detection sensitivity standards for a WTMD were developed based on results of measurement. Furthermore, institutional plans to maintain the same detection sensitivity for domestic aviation security were made through suggestions for Korean standards OTP development methods, taking characteristics of the aviation field into consideration.

Detection of Faces Located at a Long Range with Low-resolution Input Images for Mobile Robots (모바일 로봇을 위한 저해상도 영상에서의 원거리 얼굴 검출)

  • Kim, Do-Hyung;Yun, Woo-Han;Cho, Young-Jo;Lee, Jae-Jeon
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.

  • PDF

Research on an Engagement Level Underwater Weapon System Model with Neyman-Pearson Detector (Neyman-Pearson 표적 탐지기를 적용한 수중 무기체계 교전수준 모델 개발 연구)

  • Cho, Hyunjin;Kim, Wan-Jin;Kim, Sanghun;Yang, Hocheol;Lee, Hee Kwang
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2019
  • This paper introduces the simulation concepts and technical approach of underwater weapon system performance analysis simulator, especially focused on probabilistic target detection concepts. We calculated the signal excess (SE) value using SONAR equation, then derived the probability density function(PDF) for target presence($H_1$) or absence($H_0$) cases, respectively. With the Neyman-Pearson detector criterion, we got the probability of detection($P_D$) while satisfying the given probability of false alarm($P_{FA}$). At every instance of simulation, target detection is decided in the probabilistic perspective. With the proposed detection implementation, we improved the model fidelity so that it could support the tactical decision during the operation.

Design and Fabrication of wideband low-noise amplification stage for COMINT (통신정보용 광대역 저잡음 증폭단 설계 및 구현)

  • Go, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.221-226
    • /
    • 2012
  • In this paper, wideband two-stage amplification stage was designed, fabricated and evaluated. The proposed amplification stage with a novel gain control method have a high gain, low noise and high linearity performance. It is consisted of common emitter amplifier as the first stage, cascode gain control amplifier as second stage and power detector which sense the received signal strength. The proposed amplification stage shows a total gain of 29 dB~37 dB, noise fiugre of 1.5 dB at operating band and high linearity performance as the IMD (third intermodulation distortion) level is below the noise level of the measurement equipment at the control voltage 2.0 V generated from power detector under the strong electric field condition.