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Abstract – Detecting remote targets is important to active protection system (APS) or infrared search 
and track (IRST) applications. In normal situation, the well-known constant false alarm rate (CFAR) 
detector works properly. However, decoys in APS or closely spaced targets in IRST degrade the 
detection capability by increasing background noise level in the CFAR detector. This paper presents a 
context aware CFAR detector by the intensity sorting and selection of background region to reduce the 
effect of neighboring targets that lead to incorrect estimation of background statistics. The existence of 
neighboring targets can be recognized by intensity sorting where neighboring targets usually show 
highest ranks. The proposed background statistics (mean, standard deviation) estimation method from 
median local pixels can be aware of the background context and reduce the effects of the neighboring 
targets, which increase the signal-to-clutter ratio. The experimental results on the synthetic APS 
sequence, real adjacent target sequence, and remote pedestrian sequence validated that the proposed 
method produced an enhanced detection rate with the same false alarm rate compared with the 
hysteresis-CFAR (H-CFAR) detection. 
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1. Introduction 
 
In surveillance applications, remote targets are projected 

to an image plane. If the imaged target sizes are smaller 
than the instantaneous field of view (IFOV), the targets 
are called point targets. Optical dispersion and sensing 
mechanism make them Gaussian-like spread blobs, which 
are called small targets. If the target area is larger than 
approximately 100 pixels, the targets are called extended 
targets. Automatic target recognition methods cannot be 
applicable because there is no shape information except 
circular blob. Automatic target detection methods can 
localize the positions of remote small targets. Small target 
detection methods can be used in military surveillance 
problems such as active protection system (APS) and 
infrared search and track (IRST) to protect tanks and ships 
from attacking missiles [1, 2]. 

Previous researches focused on the issues of how to 
increase the detection rate of dim targets or how to reduce 
false alarms caused by environmental clutters in ground, 
sky, and sea. The issue of dim target detection was 
alleviated using the track-before-detect technique, which 
uses tracking to integrate target intensities in multi-frames 
before decision making for upgraded signal strength. The 
other issue of reducing false alarms can be solved by 
either spatial filters [3-5] or temporal filters [6-8]. Cloud 

clutter around edge produces huge number of false 
detections, which can be reduced using the mean filter 
[9], median filter [9], least mean square filter [10, 11], and 
morphological Top-Hat filter [5, 12]. In sea-based IRST 
application, glints of sea surface generate flickering false 
alarms, which can be alleviated using the three dimensional 
fast Fourier transform spectrum [13], wavelet transform 
[14-16], low pass filter [17], and adaptive high pass filter 
[18] in frequency domain analysis. 

These approaches works well in their specific 
operational environments to reduce the number of false 
detections. The number of targets can be a single or 
multiple targets that were separated widely. In real 
scenarios such as APS and IRST, incoming remote multiple 
targets are located closely in image space due to the 
projection process. The previous methods frequently use 
a constant false alarm rate (CFAR) detector after specific 
filtering to maintain the number of false alarms in cluttered 
environments. The CFAR detector assumes that a single 
target exists in front of background clutters. If the 
condition fails, the CFAR cannot work properly. One of the 
examples is the scenario of closely spaced multi-targets, 
which occurs frequently in the APS or IRST applications as 
shown in Fig. 1. In APS, Fig. 1(a) sequence contains two 
small targets, a decoy on the left and a true missile on the 
right. In IRST, Fig. 1(b) sequence demonstrates the 
passing-by scenario of four neighboring group targets 
moving in the air. The original CFAR detector uses 
background statistics to set a detection threshold. In this 
paper, the closely spaced multi-target detection problem is 
solved by the proposed context aware CFAR (CA-CFAR) 
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detection by inserting an intensity ordering and pixel 
sampling block in front of the estimation of the background 
statistics, which can analyze the context of background 
status around a probing target. Until now, no one has 
proposed a suitable small target detection method for 
closely spaced multiple targets in the IRST or APS problem. 
Only Fernandez attempted to solve a similar problem using 
super-resolution processing [19].  

Section 2 introduces the baseline detection method (H-
CFAR) and its limitation by a comparison with the well-
known CFAR detector. Section 3 presents the proposed 
closely spaced multi-target detection algorithm. The 
performance of this method is evaluated in Section 4 and 
the conclusions are reported in Section 5.  

 
 
2. Background of CFAR-based Small Infrared 

Target Detection 
 
CFAR-based detection method: The basic concept of 

CFAR-based detection is based on the automatic threshold 
selection using background statistics information. In 
cluttered environments, conventional infrared small target 
detection methods use the spatial filtering (signal enhance-
ment and noise/clutter reduction) followed by a CFAR 
thresholding because of its robustness to clutter [20]. Fig. 2 
summarizes the flow of conventional small target detection 
using CFAR method.  

Given a test image (Fig. 2(a)), spatial filtering methods 
were applied to reduce the background clutter or enhance 
the targets (Fig. 2(b)). 3D perspective plots demonstrate the 
effect of background clutter reduction by the spatial filters. 
The original CFAR method regards each pixel as candidate 
target location and probes each pixel by sliding. Fig. 2(c) 
shows an example of probing region, which consists of a 
target region, a guard region, and a background region. 

Through the estimation of background statistics and adaptive 
thresholding (CFAR), the final targets are detected, as 
shown in Fig. 2(d) where red dots represent survived pixels. 

Previous studies focused on the filtering methods in 
spatial or temporal domain to reduce the background 
clutter. This paper focuses on the last block, decision 
making, particularly CFAR-based adaptive thresholding. 
The final target detection is made by a threshold (k). If 
the filtered signal intensity of a candidate target (Is) is 
larger than k, the target is determined to be detected. The 
original CFAR detector uses the additional information 
of background statistics such as standard deviation to 
maintain or reduce the effects of background clutter. Fig. 3 
visualizes the operational mechanism of the CFAR detector 
by changing the threshold adaptively using background 
statistics, standard deviation (σBG). Therefore, a new 
threshold is changed from k to k'=k·σBG. If the background 
noise level increases, the threshold automatically increases, 
which leads to constant false alarms. Fig. 3(a) shows a bright 
target image in a clean background and corresponding 
cross-sectional signal intensity plot. In this case, any dim 
targets can be detected easily because of small standard 
deviation value of background region. On the other hand, 
Fig. 3(b) shows another bright target image in a cluttered 
background and corresponding cross-sectional signal 
intensity plot. In this case, the target signal should be high 
enough to be detected because of large standard deviation 
value of background region. 

The original CFAR (O-CFAR) detector has processing 
flow as shown in Fig. 4(top path). A test image is filtered 

(a) 

(b) 

Fig. 1. Closely spaced multi-target detection scenarios in 
small infrared target detection: (a) incoming multi-
targets in active protection system scenario; (b) 
passing-by grouped targets in infrared search and 
track scenario. 

 

 
Fig. 2. CFAR-based small target detection flow: (a) test

image; (b) result of spatial filtering; (c) example of 
target region and background region; (d) final 
detection using CFAR 
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by a specific filter and then the aforementioned adaptive 
thresholding is applied for each pixel. Final target 
information (x position, y position, target width, target 
height) is extracted by clustering. Although the O-CFAR 
detector shows good detection capability, the processing 
cost increases enormously due to the pixel-wise statistics 
estimation. Recently, Kim proposed a computationally 
efficient method, called hysteresis-threshold-based constant 
false alarm (H-CFAR) detector [21]. As shown in Fig. 
4(bottom path), the H-CFAR uses an adaptive hysteresis 
threshold consisting of a small threshold for candidate 
detection and an adaptive CFAR threshold for the final 
decision. The O-CFAR and H-CFAR show almost the same 
detection capability except for the processing time. The O-
CFAR detector searches all the pixels above a thermal 
noise level. In contrast, the H-CFAR adopts a two kinds of 
threshding method, called hysteresis threshold. The first 
small threshold is used for producing region of interest 
(ROI) and the second adaptive threshold is used for the 
final decision using background statistics around the ROI 
region.  

Target missing problem of CFAR-based method in closely 
spaced target detection: O-CFAR or H-CFAR shows good 
performance on normal detection environments as discussed 
above. On the other hand, O-CFAR or H-CFAR shows 
degraded target detection results for closely spaced multi-
target scenarios. Fig. 5(b) shows the target detection results 
using H-CFAR for a APS test image shown in Fig. 5(a). A 
neighboring decoy hinders the target detection, which is 
the purpose of the decoy. Likewise, H-CFAR misses 

grouped targets in IRST scenario. Fig. 5(d) shows the 
target detection results using H-CFAR for a APS test image 
shown in Fig. 5(c). The arrows indicate ground the truth 
targets and the rectangles represent the targets detected by 
applying the H-CFAR after a modified mean subtraction 
filter (M-MSF) [21]. The two center targets were missed 
by the neighboring targets. Such target missing problem 
originates from closed spaced targets during an estimation 
of the background statistics (standard deviation). Fig. 
5(e) shows the enlarged second target region (dotted circle 
in Fig. 5(d)) to analyze such phenomenon. Neighboring 
targets (1st and 3rd) indicated by solid arrows belong to the 
background region where a CFAR threshold is calculated. 
The neighboring targets increase the standard deviation of 
the background, which leads to a target missing problem 
by the increased threshold value (k'=k·σBG). The proposed 
context aware-CFAR (CA-CFAR) can solve the problem 
by intensity sorting-based background pixel selection 
during the estimation of the background statistics.  

The proposed method is quite simple but effective for 
detecting closely spaced multiple small targets in infrared 
images. 

 
 
3. Proposed Context Aware-CFAR Detection  

(CA-CFAR) 
 
The proposed multi-target detection method is based on 

the H-CFAR detector. Fig. 6 presents the overall flow of 
context aware-CFAR detector where a context aware block 
is inserted before the background (BG) statistics estimation 
to identify neighboring targets in a background region. 
The spatial filter by M-MSF filter ( ( )M MSFI x y− , ) provides 
enhanced target signal by target-background contrast for a 

(a)                     (b) 

Fig. 3. Basic concept of a constant false alarm detector to 
minimize the effect of clutter: (a) weak background 
clutter case; (b) strong background clutter case. 
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Fig. 4. Comparison of CFAR and H-CFAR detectors in 
terms of processing flow. 

Fig. 5 Target missing problem of the CFAR-based closely 
spaced target detection: (a) a cropped APS image 
with two targets (a decoy, a true target); (b) H-
CFAR based detection results: a missed target by 
the neighboring target; (c) a cropped group targets 
indicated by the arrows; (d) target detection results: 
two missed targets by neighboring targets, and (e) 
enlarged probing region of a missed target. 
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test image ( ( )I x y, ) (see Fig. 2(b)). In the CA-CFAR 
detector, the candidate target region or region of interest 
(ROI) can be found by low level thresholding and eight-
nearest neighbor (8-NN)-based clustering. The background 
region size is calculated to be three- to four-times the size 
of the target region. The guard region is just a blank region 
that is not used in both regions and is set as a two- or three-
pixel gap (see Fig. 2(c)).  

The detailed flowchart of CA-based CFAR detection is 
shown in Fig. 7. It consists of the context aware processing, 
estimation of background statistics, and adaptive thresholding 
block. The context aware means that true background 
pixels can be identified, which helps to find background 
statistics correctly. The context aware can be performed by 
an intensity sorting and background pixel selection around 
a median value. Fig. 8(b) validates this idea for a test 
image shown in Fig. 8(a). Original background pixels are 
identified using target ROI information. The intensity 
sorting histogram (Fig. 8(b)) shows that neighboring target 
pixels in the background region are usually located at 
upper position in the intensity ranking. Therefore, a median 
intensity value can be a starting point of context aware 
(CA) to exclude neighboring target pixels in a background 
region. The next step of CA is to include pixels around 
the median value using a control parameter, percent of 
inclusion (PCA %, normally 70%-80%). In general, infrared 
images have thermal noise which can be modeled as 
Gaussian distribution. The target background intensity 
can be estimated optimally by applying expectation to the 
Gaussian random variables. The unbiased optimal estimator 
is the sample average or linear mean. So, the background 

pixel selection of CA can handle both the neighboring 
target problem and thermal noise reduction. Small dots in 
Fig. 8(c) represent the selected background pixels (dotts) 
using the proposed CA method.  

Note that the neighboring target pixels were excluded in 
the background region. The index list (LBG) of CA-based 
background pixel is inserted into the following block, 
estimation of background statistics. The mean ( BGμ ) and 
standard deviation ( BGσ ) of the background region can be 
estimated using Eq. (1) and (2), respectively.  

 
 ( )

( )
( )

BG
BG i j L

mean I i jμ
, ∈

= ,  (1) 

 ( )
( )

( )
BG

BG i j L
STD I i jσ
, ∈

= ,  (2) 
 

where STD denotes the abbreviation of standard deviation. 
BGμ  and BGσ  are the two key parameter in a CA-CFAR 

detector because they can control the detection rate and 
false alarm rate in the closely spaced multiple target 
scenario. The missed targets can be detected if the 
parameters ( BGμ , BGσ ) is estimated by the CA method.  

The final block is to make a decision using an adaptive 
thresholding method. A probing region is detected as a 
target if the signal-to-background ( max BGI μ− ) is greater 
than the second threshold BGk σ⋅ , as defined in Eq. (3).  

 

 
max

Detected if

BG BGI kμ σ− > ⋅  (3) 

where maxI  denotes maximum target signal obtained using 
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Fig. 6. Proposed context aware-based multiple target 
detection flow. 
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Fig. 8. Closely spaced multiple target detection procedure: 

(a) background pixels used in the original H-CFAR 
(SCR:4.1); (b) context aware (CA)-based analysis 
of background region using an intensity histogram 
of the background region; (c) neighboring target 
rejected background pixels in the proposed CA-
CFAR (SCR: 16.7); (d) final target detection results.
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Eq. (4), where T  represents an index set of the target 
region.  

 
 ( )max ( )

max ( )
i j T

I I i j
, ∈

= ,  (4) 
 
Note that Eq. (3) can be converted to signal-to-clutter 

ratio (SCR) if the equation is divided by BGσ , as defined 
in Eq. (5). 

 

 maxSCR= BG

BG

I
k

μ
σ

−
>  (5) 

 
Fig. 8(c) presents the effect of the proposed CA-CFAR 

in closely spaced multiple target detection. It can reject the 
neighboring target pixels using 70CAP %=  and showed a 
enhanced SCR of 16.7 for the same target. Note that 
correct background statistics were obtained using the 
proposed CA-based background statistics estimation. Fig. 
8(d) shows CA-CFAR based detection results where the 
two missed targets in Fig. 5(d) were detected correctly. 
Therefore, the proposed new CA-CFAR can increase the 
detection rate by removing the effects of the neighboring 
targets during the calculation of the background statistics. 
Because the final threshold ( k ) in Eq. (3) or Eq. (5) 
controls the detection rate and false alarm rate, it can be 
changed depending on the operation scenarios.  

 
 

4. Experimental Results 
 
The proposed CA-CFAR was compared with the 

baseline method, H-CFAR [21]. The input images were 
filtered using the same spatial filter, M-MSF. The two test 
image sets were prepared to validate the performance of 
the proposed method. One is the real infrared image 
sequence of Seoul air show, consisting of four F-15K 
fighters with adjacent formation flight in strong cloud 
clutter and acquired using a Cedip, LWIR camera (Set 1). 
The other was generated by commercial software called 
OKTAL-SE (Set 2) [22]. OKTAL-SE is the only simulator 
that can synthesize both passive (IR) and active (Synthetic 
Aperture Radar). The scenario program can select the 
background and target trajectory and the SE-RAY-IR then 

synthesizes the IR sequences using the ray tracing method. 
For an active protection system (APS) in military 
applications, two targets (one is the real target, the other is 
a decoy) were inserted and the incoming target distance 
was 1.23km at Mach 6.  

The detection performance was compared using the 
receiver operating characteristic (ROC) curve using the 
detection rate (DR) and false alarm rate (FAR) by varying 
the adaptive threshold ( k ). The low level threshold was set 
to 10. As shown in Fig. 9, the proposed method 
outperforms the other in terms of ROC curve area for test 
Sets 1 and 2. Table 1 lists the statistical performance 
comparisons of the proposed CA-CFAR and previous H-

Fig. 9. Comparative detection performance for the proposed
CA-CFAR and H-CFAR given the test Set 1 (a), Set
2 (b). 

Table 1. Statistical performance comparisons of the closely 
space multiple target detection methods (DR: 
detection rate, FAR: number (#) of false alarms 
per image). 

Test set Set 1 (53 images) Set 2 (50 images) 

Method CA-CFAR 
(proposed) 

H-CFAR  
[21] 

CA-CFAR
(proposed)

H-CFAR 
[21] 

Threshold (k) 8.1 5.2 13.9 7.5 
DR [%] 100.0 77.7 100.0 71.0 

FAR [#/image] 13.2 13.2 5.0 5.0 
 
 

 
Fig. 10. Comparative analysis of the closely spaced multiple 

target detection for the test Set 1 and Set 2. Small 
yellow rectangles represent detected results and 
large magenta rectangles represent ground truths.
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CFAR [21] given the same false alarm rate (FAR) indicated 
by the arrows in Fig. 9. According to the results, the 
proposed CA-CFAR produced a much larger number of 
correct detections than the baseline method, H-CFAR [21]. 
Fig. 10 presents the closely space multiple target detection 
results of cluttered images, where the small rectangles 
represent the detection and large rectangles ground truth 
locations. As indicated by the arrows, the H-CFAR often 
misses the closely spaced multiple targets due to the high 
background standard deviation. Note the superior detection 
performance of the CA-CFAR based method in the 
adjacent multi-target detection scenarios. 

An additional experiment was conducted to validate the 
general capability of the proposed CA-CFAR detector for 
closely spaced small infrared targets. The test scenario is as 
follows. Three people run on the road at 300m distance and 
a FLIR T620 (field of view: 25°, long wave infrared, 
640×480 resolution) mounted on a car records the scene at 
night time. The total number of test frames is 1,600 and a 
low threshold was set as 100 and an adaptive threshold 
parameter k was set 5 to detect the people. Fig. 11 shows 
the partial detection results for the closely moving people. 
The proposed CA-CFAR detector can localize multiple 
people correctly for the whole sequence. 

 
 

5. Conclusion 
 
The adaptive threshold-based small target detection 

method such as CFAR normally uses background statistics 
(standard deviation) to produce constant false alarms 
regardless background noise level. Although the con-

ventional method works well in normal scenarios, it fails 
to detect closely spaced multiple targets. This paper 
proposed a new context aware-based multiple target 
detection method, which is simple but powerful detection 
capability for small infrared targets using a intensity 
sorting-based background pixel selection in a back-
ground statistics estimation. As validated by a set of 
quantitative experiments, it can effectively find the true 
targets with the formation flight. Additional experiment 
on the remote people detection showed good detection 
performance. Because the proposed method can increase 
the computational cost by 15%, it can be used for real-time 
applications of stationary and moving infrared camera 
platforms because of the simplicity of the algorithm with 
powerful detection capability for dense target detection. 
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