• 제목/요약/키워드: least squares linear regression

검색결과 134건 처리시간 0.021초

Weighted Least Absolute Deviation Lasso Estimator

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.733-739
    • /
    • 2011
  • The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of $L_1$ regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviation(LAD) estimator is an alternative to the OLS estimate, it is sensitive to leverage points. We propose a robust Lasso estimator that is not sensitive to outliers, heavy-tailed errors or leverage points.

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

Feature selection in the semivarying coefficient LS-SVR

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.461-471
    • /
    • 2017
  • In this paper we propose a feature selection method identifying important features in the semivarying coefficient model. One important issue in semivarying coefficient model is how to estimate the parametric and nonparametric components. Another issue is how to identify important features in the varying and the constant effects. We propose a feature selection method able to address this issue using generalized cross validation functions of the varying coefficient least squares support vector regression (LS-SVR) and the linear LS-SVR. Numerical studies indicate that the proposed method is quite effective in identifying important features in the varying and the constant effects in the semivarying coefficient model.

Reflections on the China-Malaysia Economic Partnership

  • AL SHAHER, Shaher;ZREIK, Mohamad
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권3호
    • /
    • pp.229-234
    • /
    • 2022
  • The study aims to investigate whether Musharakah management has an impact on Chinese and Malaysian business partnerships. To estimate the relationship between Musharakah and the Sino-Malaysian partnership, this study uses a panel econometric technique namely pooled ordinary least squares. Ordinary Least Squares regression (OLS) is a common technique for estimating coefficients of linear regression equations which describe the relationship between one or more independent quantitative variables and a dependent variable. Data was retrieved from the annual reports (from 2009 to 2019) of non-financial firms listed on the stock exchange of China and Malaysia. Four partnership measures (i.e., Musharakah, Mudarabah, Tawuruq, and Kafalah) were used to estimate the impact of Musharakah on the Sino-Malaysian partnership. Empirical results reveal that Musharakah and Mudarabah are positively related to Kafalah but the relationship is statistically insignificant. Alternatively, Musharakah is positively and significantly related to Mudarabah. Musharakah and Mudarabah have a positive but insignificant relationship. The findings of this study suggest that management of partnership has a positive impact on firm partnership. Furthermore, it supports the hypothesis that improving partnership enhances Musharakah, which has a positive impact on the firm's partnership.

회귀선에 의한 국내 지점 확률항우량산정에 관한 연구 (서울, 대구, 목포 지점을 중심으로) (A Study on the Determination of Point Probability Rainfall-Depth in Korea by the LinearLeast Squares method (Seoul, Daegu and Mokpo))

  • 이원환;김재한
    • 물과 미래
    • /
    • 제9권1호
    • /
    • pp.81-85
    • /
    • 1976
  • 본 연구는 서울, 대구 및 목포지점의 확률항우량을 회귀선에 의하여 손쉽게 구하고자 유도제시하였다. 재현기간과 10분에서부터 120분까지 각각의 단시간 확률항우량 관계를 직선식으로 유도하였으며 그 직선으로부터 확률항우량을 직접 구할 수 있는 해석적인 방법을 고찰하였다. 연구결과에 의하면 두 변수사이에는 상당한 관계가 있음을 보여줬으며 적절한 변수변환을 시도한다면 세 지점이외 다른 지점도 적용이 가능하리라 사료된다.

  • PDF

Generalized Bayes estimation for a SAR model with linear restrictions binding the coefficients

  • Chaturvedi, Anoop;Mishra, Sandeep
    • Communications for Statistical Applications and Methods
    • /
    • 제28권4호
    • /
    • pp.315-327
    • /
    • 2021
  • The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics literature because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian analysis of these models, one may face the problem of lack of robustness with respect to underlying prior assumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as restricted Stein rule estimators.

Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation

  • Lee, Juhee;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • 제28권6호
    • /
    • pp.627-641
    • /
    • 2021
  • An asymmetric least squares estimation method has been employed to estimate linear models for percentile regression. An asymmetric maximum likelihood estimation (AMLE) has been developed for the estimation of Poisson percentile linear models. In this study, we propose generalized nonlinear percentile regression using the AMLE, and the use of the parametric bootstrap method to obtain confidence intervals for the estimates of parameters of interest and smoothing functions of estimates. We consider three conditional distributions of response variables given covariates such as normal, exponential, and Poisson for three mean functions with one linear and two nonlinear models in the simulation studies. The proposed method provides reasonable estimates and confidence interval estimates of parameters, and comparable Monte Carlo asymptotic performance along with the sample size and quantiles. We illustrate applications of the proposed method using real-life data from chemical and radiation epidemiological studies.

An Innovative Application Method of Monthly Load Forecasting for Smart IEDs

  • Choi, Myeon-Song;Xiang, Ling;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.984-990
    • /
    • 2013
  • This paper develops a new Intelligent Electronic Device (IED), and then presents an application method of a monthly load forecasting algorithm on the smart IEDs. A Multiple Linear Regression (MLR) model implemented with Recursive Least Square (RLS) estimation is established in the algorithm. Case Study proves the accuracy and reliability of this algorithm and demonstrates the practical meanings through designed screens. The application method shows the general way to make use of IED's smart characteristics and thereby reveals a broad prospect of smart function realization in application.

A Note on the Asymptotic Property of S2 in Linear Regression Model with Correlated Errors

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.233-237
    • /
    • 2003
  • An asymptotic property of the ordinary least squares estimator of the disturbance variance is considered in the regression model with correlated errors. It is shown that the convergence in probability of S$^2$ is equivalent to the asymptotic unbiasedness. Beyond the assumption on the design matrix or the variance-covariance matrix of disturbances error, the result is quite general and simplify the earlier results.

Concave penalized linear discriminant analysis on high dimensions

  • Sunghoon Kwon;Hyebin Kim;Dongha Kim;Sangin Lee
    • Communications for Statistical Applications and Methods
    • /
    • 제31권4호
    • /
    • pp.393-408
    • /
    • 2024
  • The sparse linear discriminant analysis can be incorporated into the penalized linear regression framework, but most studies have been limited to specific convex penalties, including the least absolute selection and shrinkage operator and its variants. Within this framework, concave penalties can serve as natural counterparts of the convex penalties. Implementing the concave penalized direction vector of discrimination appears to be straightforward, but developing its theoretical properties remains challenging. In this paper, we explore a class of concave penalties that covers the smoothly clipped absolute deviation and minimax concave penalties as examples. We prove that employing concave penalties guarantees an oracle property uniformly within this penalty class, even for high-dimensional samples. Here, the oracle property implies that an ideal direction vector of discrimination can be exactly recovered through concave penalized least squares estimation. Numerical studies confirm that the theoretical results hold with finite samples.