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Abstract

In this paper we propose a feature selection method identifying important features in
the semivarying coefficient model. One important issue in semivarying coefficient model
is how to estimate the parametric and nonparametric components. Another issue is how
to identify important features in the varying and the constant effects. We propose a
feature selection method able to address this issue using generalized cross validation
functions of the varying coefficient least squares support vector regression (LS-SVR)
and the linear LS-SVR. Numerical studies indicate that the proposed method is quite
effective in identifying important features in the varying and the constant effects in the
semivarying coefficient model.

Keywords: Feature selection, generalized cross validation function, least squares support
vector regression, semivarying coefficient model, varying coefficient model.

1. Introduction

Hastie and Tibshirani (1993) introduced the varying coefficient model, which is known
as powerful and flexible for modeling the dynamic changes of regression coefficients. The
varying coefficient model is a useful extension of the classical linear regression model. In
the varying coefficient model, the regression coefficients are not set to be constant but are
allowed to change with the value of other features called smoothing variables. The varying
coefficient model inherits simplicity and easy interpretation of the classical linear regression
models and is gaining its popularity in statistics literature in recent years. The introductions,
various applications and current research areas of the varying coefficient model can be found
in Hoover et al. (1998), and Fan and Zhang (2008). A great deal of attention has been focused
on the problem of estimating the varying coefficients. Most of this attention has been paid
to using kernel smoothing technique. Fan and Zhang (2008) give an excellent review of
the varying coefficient models and discusses three approaches in estimating the coefficient
function: kernel smoothing, polynomial splines and smoothing splines. Recently, some more
flexible varying coefficient models have been developed and discussed. See, for example, Yang
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et al. (2006), Li and Racine (2010), Lee et al. (2012), Xue and Qu (2012), and Hwang et al.
(2016).

Semivarying coefficient models with both nonparametric and parametric components have
become increasingly useful in many scientific fields due to their appropriate representation of
flexibility and interpretation. Zhang et al. (2002) proposed a two-step estimation procedures
in the semivarying coefficient model. Fan and Huang (2005) proposed a profile least squares
estimation for parametric coefficients. Suykens and Vandewalle (1999) proposed the least
squares support vector machine (LS-SVM), which can be seen as the least squares version
of SVM (Vapnik, 1995, 1998).By using LS-SVM the linear equations for solutions and the
generalized cross validation (GCV) function for the model selection can be easily induced.
Shim and Hwang (2015) proposed a method for fitting the semivarying coefficient regression
model using least squares support vector regression (LS-SVR) technique, which analyzes
the dynamic relation between a response and features. See for further details, Suykens and
Vandewalle (1999), Suykens et al. (2001), and Hwang and Shim (2016).

The feature selection is used for the better understanding of underlying model and the
better prediction performance (reduction of overfitting). Many feature selection methods for
linear regression models have been widely used, including the best-subset selection, the step-
wise selection, and Bootstrap procedures (Sauerbrei and Schumacher, 1992). LASSO (least
absolute shrinkage and selection operator) has been proposed by Tibshirani (1997), which
provides the selection of important features and the estimation of regression coefficients si-
multaneously by shrinking some regression coefficients to zero. Huang et al. (2005) proposed
the regularization and feature selection approach using LASSO in the accelerated failure
time model. Wu et al. (2015) proposed a semivarying coefficient model using a penalized
rank-based loss function for the estimation and the identification of important feature in
high dimensional genetic and genomic data.

In this paper we propose the feature selection method to identify important features in
both varying and constant effects (nonparametric and parametric effects). The rest of this
paper is organized as follows. In Section 2, we present the semivarying coefficient LS-SVR
and a GCV technique in order to choose the optimal values of hyperparameters. In Section
3, we propose the feature selection method identifying important features by using GCV
functions of the varying coefficient LS-SVR and the linear LS-SVR. In Section 4 and 5 we
present numerical studies and conclusion, respectively.

2. Semivarying coefficient LS-SVR

In this section we first present the semivarying LS-SVR (Shim and Hwang, 2015) and the
varying coefficient LS-SVR and a GCV function for choosing the hyperparameters.

Using the vector of features, xi ∈ Rd, the vector of smoothing variables, ui ∈ Rdu (Hastie
and Tibshirani, 1993) and the response corresponding to xi and ui, yi ∈ R1, we consider
the semivayring coefficient LS-SVR as follows:

yi = f(xi,ui) + ei = a0(ui) +
∑
k∈V1

xikak(ui) + b0 +
∑
k∈V2

xikbk + ei, i = 1, · · · , n, (2.1)

where |V1| > 0, |V2| > 0, V1 ∪ V2 ⊂ D = (1, · · · , d),
We assume that ak(ui) for k = 0, · · · , d is nonlinearly related to the smoothing variable ui

such that ak(ui) = ω′kφ(ui) where ωk is a corresponding df×1 weight vector to φ(ui). Here
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the nonlinear feature mapping function φ : Rdu → Rdf maps the input space to the higher
dimensional feature space where the dimension df is defined in an implicit way. An inner
product in the feature space has an equivalent kernel in the input space, φ(u1)′φ(u2) =
K(u1,u2) (Mercer, 1909). Several choices of the kernel K(·, ·) are possible. In this paper we
utilize the Gaussian kernel as follows:

K(ui,uj) = exp

(
− 1

σ2
||ui − uj ||2

)
,

where σ2 > 0 is a kernel (bandwidth) parameter.
With the quadratic loss function the estimator of (ω0,ωk, b0, bk) can be defined as any

solution to the following optimization problem:

min L =
1

2
||ω0||2 +

1

2

∑
k∈V1

||ωk||2 +
C

2

n∑
i=1

(yi − f(xi,ui))
2, (2.2)

where C > 0 is a penalty parameter which controls the balance between the smoothness
and fitness of the estimator. We can express the above problem by formulation of LS-SVR
as follows:

min L =
1

2
||ω0||2 +

1

2

∑
k∈V1

||ωk||2 +
C

2

n∑
i=1

e2
i (2.3)

subject to ei = yi − a0(ui)−
∑

k∈V1
xikak(ui)− b0 −

∑
k∈V2

xikbk, i = 1, · · · , n.
We construct a Lagrange function as follows:

L=
1

2
‖ω0‖2+

1

2

∑
k∈V1

‖ωk‖2+
C

2

n∑
i=1

e2
i−

n∑
i=1

αi

(
ei−yi+a0(ui)+

∑
k∈V1

xikak(ui)+b0+
∑
k∈V2

xikbk

)
,

where αi’s are the Lagrange multipliers. Then, the optimality conditions are given by

∂L

∂ω0
=0→ ω0 =

n∑
i=1

φ(ui)αi,

∂L

∂ωk
=0→ ωk =

n∑
i=1

xikφ(ui)αi, k ∈ V1,

∂L

∂b0
=0→

n∑
i=1

αi = 0,

∂L

∂bk
=0→

n∑
i=1

xikαi = 0, k ∈ V2

∂L

∂ei
=0→ Cei − αi = 0,

∂L

∂αi
=0→ ei − yi + a0(ui) +

∑
k∈V1

xikak(ui) + b0 +
∑
k∈V2

xikbk = 0, i = 1, · · · , n.
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After eliminating ei’s and ωk’s, we have the optimal values of (αi, b0, bk)’s from the linear
equation as follows:(

X(V1)X(V1)′ �K(u,u) + 1
C I X(V2)

X(V2)′ O22

)(
α
b

)
=

(
y
0

)
(2.4)

whereX(V1) = [1n×1,x(V1)],x(V1) = {xik}ni=1,k∈V1
,X(V2) = [1n×1,x(V2)], d2 =length(V2),

x(V2) = {xik}ni=1,k∈V2
, b = b0 ∪ {bk}k∈V2

, (d2 + 1)× 1 vector, O22 is the zero matrix of size
(d2 + 1)× (d2 + 1), and � denotes a component-wise product.

Thus, the estimators of ak(ut)’s are obtained as follows:

â0(ut) =

n∑
i=1

K(ut,ui)α̂i and âk(ut) =

n∑
i=1

xikK(ut,ui)α̂i, k ∈ V1, (2.5)

The estimated regression function given (xt,ut) is obtained as

f̂(xt,ut) =
n∑

i=1

K(ut,ui)α̂i +

n∑
i=1

∑
k∈V1

xtkxikK(ut,ui)α̂i + b̂0 +
∑
k∈V2

xtk b̂k, (2.6)

The functional structures of the semivarying coefficient LS-SVR is characterized by hy-
perparameters (penalty parameter and kernel parameter). To choose the optimal values of
hyperparameters of the semivarying coefficient LS-SVR we consider the cross validation(CV)
function as follows:

CV (λ) =
1

n

n∑
i=1

(
yi − f̂(xi,ui)

(−i)
)2

, (2.7)

where λ is the set of hyperparameters and f̂(xi,ui)
(−i) is the regression function esti-

mated without the i th observation. Since for each set of candidates of hyperparameters,
f̂(xi,ui)

(−i) for i = 1, · · · , n, should be calculated, choosing the optimal hyperparame-
ters using CV function is computationally formidable. By using the leaving-out-one lemma
(Craven and Wahba, 1979) the ordinary cross validation function can be obtained as

OCV (λ) =
1

n

n∑
i=1

yi − f̂(xi,ui)

1− ∂f̂(xi,ui)
∂yi

2

=
1

n

n∑
i=1

(
yi − f̂(xi,ui)

1− hii

)2

. (2.8)

Here H is the hat matrix such that f̂(x,u) = Hy, hii is the i th diagonal element of
H = (A∗1,X(V2))B, where A∗1 is a block diagonal matrix of X(V1)X(V1)′�K(u,u), X(V2)
is obtained in (2.4), B is a (n + d2 + 1) × n leftmost submatrix of the inverse matrix of(
X(V1)X(V1)′ �K(u,u) + 1

C I X(V2)
X(V2)′ O22

)
in (2.4).

Replacing hii by their average trace(H)/n, the generalized cross validation (GCV) function
can be obtained as

GCV (λ) =

n
n∑

i=1

(
yi − f̂(xi, ui)

)2

(n− trace(H))2
. (2.9)
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3. Feature selection

In this section we first briefly introduce the varying coefficient LS-SVR and the linear
LS-SVR, which are used for the selection of important features. Here the varying coefficient
LS-SVR can be considered as the reduced model of semivarying coefficient LS-SVR (Shim
and Hwang, 2015). Next we propose the feature selection method identifying important
features by using GCV functions of the varying coefficient LS-SVR and the linear LS-SVR.

3.1. Varying coefficient LS-SVR

Using the vector of features, xi ∈ Rd, the vector of smoothing variables, ui ∈ Rdu and the
response corresponding to xi and ui, yi ∈ R1, we consider the varying coefficient LS-SVR
as follows:

yi = f(xi,ui) + ei = a0(ui) +
∑
k∈V1

xikak(ui) + ei, i = 1, · · · , n, (3.1)

where f(xi, ui) = a0(ui)+
∑

k∈V1
xikak(ui), i = 1, · · · , n, and |V1| > 0, V1 ⊂ V = (1, · · · , d).

We assume that ak(ui) for k = 0, · · · , d is nonlinearly related to the smoothing variables
ui such that ak(ui) = ω′kφ(ui) where ωk is a corresponding df × 1 weight vector to φ(ui).

With the quadratic loss function the estimator of (ω0,ωk) can be defined as any solution
to the following optimization problem:

min L =
1

2
||ω0||2 +

1

2

∑
k∈V1

||ωk||2 +
C

2

n∑
i=1

(yij − f(xi,ui))
2, (3.2)

where C > 0 is a penalty parameter which controls the balance between the smoothness
and fitness of the estimator. We can express the above problem by formulation of LS-SVR
as follows:

min L =
1

2
||ω0||2 +

1

2

∑
k∈V1

||ωk||2 +
C

2

n∑
i=1

e2
i (3.3)

subject to ei = yi − a0(ui)−
∑

k∈V1
xikak(ui), i = 1, · · · , n.

We construct a Lagrange function as follows:

L =
1

2
||ω0||2 +

1

2

∑
k∈V1

||ωk||2 +
C

2

n∑
i=1

e2
i −

n∑
i=1

αij(eij − yi + a0(ui) +
∑
k∈V1

xikak(ui)),

where αij ’s are the Lagrange multipliers. Then, the optimality conditions are given by

∂L

∂ω0
=0→ ω0 =

n∑
i=1

φ(ui)αi,

∂L

∂ωk
=0→ ωk =

n∑
i=1

xikφ(ui)αi, k ∈ V1,

∂L

∂ei
=0→ Cei − αi = 0,

∂L

∂αi
=0→ ei − yi + a0(ui) +

∑
k∈V1

xikak(ui) = 0, i = 1, · · · , n.
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After eliminating ei’s and ωk’s, we have the optimal values of the estimates of αj ’s are
obtained from the linear equation as follows:

α̂ = (X(V1)X(V1)′ �K(u,u) +
1

C
I)y (3.4)

where X(V1) = [1n×1,x(V1)],x(V1) = {xik}ni=1,k∈V1
, α̂ = (α̂1, · · · , α̂n)′ is n × 1 vector, �

denotes a component-wise product.
Thus, the estimators of ak(ut)’s are obtained as follows:

â0(ut) =

n∑
i=1

K(ut,ui)α̂i and âk(ut) =

n∑
i=1

xikK(ut,ui)α̂i, k ∈ V1, (3.5)

The estimated regression function given (xt,ut) is obtained as

f̂(xt,ut) =

n∑
i=1

K(ut,ui)α̂i +

n∑
i=1

∑
k∈V1

xtkxikK(ut,ui)α̂i. (3.6)

The functional structures of the varying coefficient LS-SVR is characterized by hyperparam-
eters (penalty parameter and kernel parameter). To choose the optimal values of hyperpa-
rameters of the varying coefficient LS-SVR we use the generalized cross validation (GCV)
function as follows:

GCV (λ) =

n
n∑

i=1

(
yi − f̂(xi,ui)

)2

(n− trace(H))2
. (3.7)

3.2. Linear LS-SVR

Using the vector of features, xi ∈ Rd and the response corresponding to xi, yi ∈ R1, we
consider the linear LS-SVR as follows:

yi = f(xi) + ei = b0 +
∑
k∈V2

xikbk + ei, i = 1, · · · , n, (3.8)

where |V2| > 0, V2 ⊂ D = (1, · · · , d).
With the quadratic loss function the estimator of (b0, bk) can be defined as any solution

to the following optimization problem:

min L =
1

2

∑
k∈V2

b2k +
C

2

n∑
i=1

(yi − f(xi))
2, (3.9)

where C > 0 is a penalty parameter which controls the balance between the smoothness
and fitness of the estimator. We can express the above problem by formulation of LS-SVR
as follows:

min L =
1

2

∑
k∈V2

b2k +
C

2

n∑
i=1

e2
i (3.10)
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subject to ei = yi − b0 +
∑

k∈V2
xikbk, i = 1, · · · , n.

We construct a Lagrange function as follows:

L =
1

2

∑
k∈V2

b2k +
C

2

n∑
i=1

e2
i −

n∑
i=1

αi

(
ei − yi + b0 +

∑
k∈V2

xikbk

)
,

where αi’s are the Lagrange multipliers. Then, the optimality conditions are given by

∂L

∂b0
=0→

n∑
i=1

αi = 0,

∂L

∂bk
=0→ bk =

n∑
i=1

xikαi, k ∈ V2,

∂L

∂ei
=0→ Cei − αi = 0,

∂L

∂αi
=0→ ei − yi + b0 +

∑
k∈V2

xikbk = 0, i = 1, · · · , n.

After eliminating eij ’s and ωk(j)’s, we have the optimal values of (αi, b0)’s from the linear
equation as follows: (

x(V2)x(V2)′ + 1
C I 1n×1

1′n×1 0

)(
α
b0

)
=

(
y
0

)
(3.11)

where x(V2) = {xik}ni=1,k∈V2
and α = (α1, · · · , αn)′ is a n× 1 vector.

Thus, the estimators of bk’s are obtained as follows:

b̂k =

n∑
i=1

xikα̂i, k ∈ V2. (3.12)

The estimated regression function given (xt) is obtained as

f̂(xt) = b̂0 +
∑
k∈V2

xtk b̂k. (3.13)

The functional structures of the linear LS-SVR is characterized by the penalty parameter.
To choose the optimal value of the penalty parameter of the linear LS-SVR we use the
generalized cross validation (GCV) function as follows:

GCV (λ) =

n
n∑

i=1

(
yi − f̂(xi)

)2

(n− trace(H))2
. (3.14)

3.3. Feature selection

To select important features for the varying coefficient effect we use GCV functions of
the varying coefficient LS-SVR, and we use GCV functions of the linear LS-SVR for the
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constant effect. We first define the function, gCV(k) for k = 1, · · · , d, which is obtained as
follows:

1) Find k1 ∈ (1, · · · , d) and gCV(1) such that gCV(1) is the minimum of GCV functions
computed with one feature and candidate sets of hyperparameters.

For example, when candidate sets of hyperparameters (penalty parameter, kernel pa-
rameter) = (100,1), (100,2), (200,1), (200,2), gCV(1) is the minimum of GCV function
with (y,x.1,u, (100, 1)), GCV function with (y,x.2,u, (100, 1)), · · · , GCV function with
(y,x.d,u, (200, 2)), where x.k = {xik}ni=1 is a n× 1 vector.

2) Find k2 ∈ (1, · · · , d)(k1) and gCV(2) such that gCV(2) is the minimum of GCV func-
tions computed with two features including k1 and candidate sets of hyperparameters.

...
d-1) Find kd−1 ∈ (1, · · · , d)(k1, · · · kd−2) and gCV(d − 1) such that gCV(d − 1) is the

minimum of GCV functions computed with d − 1 features including (k1, · · · , kd−2) and
candidate sets of hyperparameters.

d) Find gCV(d) such that gCV(d) is the minimum of GCV functions computed with d
features and candidate sets of hyperparameters.

The second derivative of gCV represents the rate at which the first derivative of gCV is
changing. If the second derivative is negative, it means that gCV is slowly changing direction,
that is, adding another features to compute the next gCV does not reduce sufficiently the
value of gCV. We want to isolate the point at which the second derivative is negative over the
domain of the gCV. Features corresponding to this point is the candidate of the important
features. Actually we use the differences instead of derivatives.

4. Numerical studies

In this section we illustrate the performance of the proposed feature selection method
through the synthetic and real examples. We use the penalized robust semiparametric ap-
proach (PRSA) of Wu et al. (2015) for the feature selection and prediction.

Example 4.1 We generate 50 training and test data sets, we identify the important features
using training data set and we obtain the prediction performance in terms of the predicted
mean squared error using test data set. Each data set consists of 50 features as the following
semivarying coefficient models:

yi = a0(ui) + a2(ui)xi4 + a3(ui)xi10 − 0.8xi3 + 1.5xi10 + ei, i = 1, · · · , 100,

where ui and xik’s are independently generated from the uniform distribution U(0,1), a0(ui) =
u2
i a1(ui) = 2sin(2πui) and a2(ui) = 2cos(2πui).
Table 4.1 shows average numbers of selected features by the proposed method and PRSA,

average numbers of selected important features for two effects - varying coefficient effect
(x4, x10), constant effect (x3, x10) - and recovery rates by the proposed method and PRSA.
Recovery rate is defined as the ratio of average number of selected important features
((x4, x10) and (x3, x10)) to the average number of selected features by the proposed method
and PRSA. For both the varying coefficient effect and the constant effect, the average num-
ber of selected important features and the recovery rates of the proposed method are higher
than those of PRSA.
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Table 4.1 Average number of selected features and average number of selected important features
in 50 synthetic training data sets, and recovery rate on two methods. The numbers in parentheses

are standard errors.

effect Avg selected features Avg selected important features Recovery rate

proposed
VC 2.28 (0.1071) 1.52 (0.0769) 0.6667

Constant 2.18 (0.1057) 0.98 (0.0782) 0.4495

PRSA
VC 2.36 (0.1975) 0.14 (0.0572) 0.0593

Constant 1.26 (0.2153) 0.32 (0.0725) 0.2540

We obtained the average predicted mean squared errors and their standard errors by the
semivarying coefficient LS-SVR for 50 test data sets with selected features by the proposed
method as (0.4725, 0.0394), and by PRSA (1.3485, 0.0552), which implies that the semi-
varying LS-SVR has better prediction performance than PRSA. For reference the average
predicted mean squared errors and their standard errors by the semivarying LS-SVR without
feature selection were obtained as (5.6926, 0.2631)

Example 4.2 For real example we consider a subset of the wage data set studied in
Wooldridge (2012), which consists of 5 variables collected on each of 526 working individuals
for the year 1976. The response variable is the logarithm of the wage (in dollars per hour),
and features are u (years of education), x1 (years of potential labor force experience), x2 (an
indicator for female), and x3 (marital status). The last two features are binary (zero-one)
in nature and serve to indicate qualitative features of the individual (the person is female
or not; the person is married or not). Taking these features into account, we consider the
semivarying coefficient model.

To test the feature selection performance, we standardize x1 and add (x4, · · · , x50) gen-
erated from the standard normal distribution. We randomly divide the whole data into 263
training data and 263 test data. and We repeat this procedure 50 times to identify the im-
portant features using training data set and we obtain the prediction performance predicted
mean squared error using test data set with selected features. Table 4.2 shows average num-
bers of selected features and average numbers of selected important features for either effects
- varying coefficient effect or constant effect - by the proposed method and PRSA. In Figure
4.1 (Left) (x1, x3) are identified as the important features for the varying coefficient effect,
and (x1, x2) as the important features for the constant effect by the proposed method. In
Figure 4.1 (Right) (x1, x2) are identified as the important features for the varying coefficient
effect, and x3 as the important feature for the constant effect by PRSA. We can see that the
proposed feature selection method provides the larger average number of selected important
features than PRSA.

Table 4.2 Average number of selected features and average number of selected important features in 50
training data sets generated from the wage data set, and recovery rate on two methods. The numbers in

parentheses are standard errors.

Avg selected features Avg selected important features Recovery rate
proposed 2.96 (0.1399) 2.38 (0.0693) 0.8041

PRSA 1.44 (0.1595) 1.06 (0.0339) 0.7361

We obtained the average predicted mean squared errors and their standard errors by the
semivarying coefficient LS-SVR for 50 test data sets with selected features by the proposed
method as (0.2909, 0.0616), and by PRSA (0.3126, 0.0769). For reference the average pre-
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dicted mean squared errors and their standard errors by the semivarying LS-SVR without
feature selection were obtained as (4.733, 0.0082).

Figure 4.1 requency of selected features for the varying coefficient effect (Upper) and
the constant effect (Lower) by the proposed method (Left) and PRSA (Right)

5. Conclusions

We have developed a feature selection method for semivarying coefficient LS-SVR for iden-
tifying important features. Important issues in such semivarying coefficient model are how
to estimate the parametric and nonparametric components and how to identify important
features. In this paper we have proposed a feature selection method which is able to attack
these issues. Numerical studies indicate that the proposed feature selection method is quite
effective in identifying constant and varying coefficients in a semivarying coefficient model.

Through the examples we showed that the proposed feature selection method derives the
satisfying solutions. Also we showed that the proposed method is simple and reliable.
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