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Abstract
The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy

and poor interpretation of the ordinary least squares(OLS) estimate through the use of L1 regularization on the
regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the
sum of squared residual errors. Even though the least absolute deviation(LAD) estimator is an alternative to
the OLS estimate, it is sensitive to leverage points. We propose a robust Lasso estimator that is not sensitive to
outliers, heavy-tailed errors or leverage points.

Keywords: Heavy-tailed errors, Lasso, leverage points, outliers, robust estimator, weight least
absolute deviation.

1. Introduction

In a linear regression model, the ordinary least squares(OLS) estimate is usually used to estimate the
regression coefficients through the minimization of the sum of squared errors, because it is simple and
unbiased. However, the OLS estimate has low prediction accuracy and poor interpretation. Prediction
accuracy can be improved by shrinking some regression coefficients even though we sacrifice a little
bit of bias. Poor interpretation can be resolved through the selection of a sparse representation with a
smaller subset of coefficients (Tibshirani, 1996).

The linear absolute shrinkage and selection operator(Lasso) method is proposed by Tibshirani
(1996) to estimate the parameters by shrinking some coefficients and setting others to zero in linear
regression model. The Lasso estimator retains the good features of both subset selection and ridge
regression (Hoerl and Kennard, 1970) that stabilizes estimates by placing a restriction on coefficients.
The difference between Lasso and ridge regression is the penalty on the regression coefficients. Lasso
employs the L1 penalty while the ridge regression uses the L2 penalty. The L1 regularization tends
to produce extremely sparse solutions; subsequently, the the Lasso method attracts more interests in
model selection (Zhao and Yu, 2006).

The OLS estimate can be distorted when the error has a heavy-tailed distribution or outliers. It is
well known that the OLS estimate is not robust to even a single outlier. Many robust estimators have
been proposed to address the problem. One of them is the least absolute deviation(LAD) estimator that
has
√

n-consistency and asymptotic normality without assuming the distribution of errors (Pollard,
1991). The Lasso estimate is obtained by minimizing the sum of squared residuals. Then it will be
significantly degraded in a noise situation. Wang et al. (2007) proposed a robust regression shrinkage
and selection method that can do regression shrinkage and selection like Lasso and is also resistant to
outliers or heavy-tailed errors like LAD.
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The LAD estimator is robust to points with large residuals called regression outliers; however, it is
known that the LAD estimator is sensitive to leverage points (Croux et al., 2003). Giloni et al. (2006)
proposed a version of the LAD estimator that is not sensitive to leverage points by redescending the
leverage points. A robust Lasso is proposed in this study and it adapts to the weighted LAD estimator
instead of the LAD estimator so that the outliers or leverage points can be effectively suppressed.

The rest of the article is organized as follows. In Section 2 we review Lasso, LAD-Lasso and
propose the weighted LAD-Lasso. The statistical properties of the proposed estimator are described.
Section 3 presents a simulation results under several situations. Finally Section 4 concludes the article.

2. Weighted Absolute Shrinkage and Selection

2.1. Weighted LAD-Lasso

Consider the linear regression model

yi = xT
i β + ϵi, i = 1, . . . , n, (2.1)

where xi = (xi1, . . . , xip)T is the p-dimensional regression predictor, β = (β1, . . . , βp)T is the regression
coefficient vector, and ϵi is the independently identically distributed random errors with median 0.

The OLS estimate β̂
ols

minimizes

RSS =
1
2

n∑
i=1

(
yi − xT

i β
)2
.

Despite its simplicity and unbiasedness, the OLS estimator is not optimal in a predictive point of view.
To get the better prediction with sacrificing the unbiasedness of the estimator Hoerl and Kennard
(1970) introduced ridge regression obtained by penalizing the L2 norm of the regression coefficients

β̂
ridge

(λ) = argminβ

RSS + nλ
p∑

j=1

|β|2
 ,

where
∑ |β|2 is the L2 penalty on β and λ ≥ 0 is the tuning parameter that balances goodness-of-fit

and model complexity. However, the ridge regression does not shrink unnecessary coefficients to zero.
Tibshirani (1996) proposed the Lasso estimator obtained by minimizing

β̂
lasso

(λ) = argminβ

RSS + nλ
p∑

j=1

∣∣∣β j

∣∣∣ . (2.2)

Because it can shrink some regression coefficients to zero, the Lasso estimator can get a sparse re-
gression model. Since Lasso uses the same tuning parameter for all regression coefficients, the Lasso
estimate produces biases for especially large coefficients (Fan and Li, 2001). The adaptive Lasso was
introduced by Zou (2006) for linear regression

β̂
alasso

(λ) = argminβ

RSS + n
p∑

j=1

λ j

∣∣∣β j

∣∣∣ (2.3)

in which adaptive weights are used for penalizing different coefficients.
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It is well known that the OLS estimate is not robust to outliers or heavy-tailed errors in a response
variable. Like the OLS estimate the Lasso suffers from unusual data points. To get a robust version of
the Lasso estimator Wang et al. (2007) proposed a LAD-lasso that uses the sum of the absolute values
of the residuals instead of RSS

β̂
lad-lasso

(λ) = argminβ

 n∑
i=1

∣∣∣yi − xT
i β

∣∣∣ + n
p∑

j=1

λ j

∣∣∣β j

∣∣∣ . (2.4)

The LAD estimator in linear regression and the LAD-Lasso estimator are both resistant to outliers or
heavy-tailed errors; however, the LAD estimator is not robust to observations with unusual predictor
values (Giloni et al., 2006). Then he proposed a weighted LAD estimator in linear regression.

To alleviate the sensitivity to leverage points we consider a robust version of the Lasso estimator

β̂
wlad-lasso

(λ) = argminβ

 n∑
i=1

wi(xi)
∣∣∣yi − xT

i β
∣∣∣ + n

p∑
j=1

λ j

∣∣∣β j

∣∣∣ , (2.5)

where the weight wi depends on the space of predictors. Giloni et al. (2006) suggested that the weight
wi was taken to be inversely proportional to the distance from the clean subset. We adopt the weight

wi = min

1, χ2
q,0.05

RD2
i

 ,
where χ2

q,0.05 is the upper 5% critical value of a chi-squared distribution with q degrees of freedom and

RD2
i is a robust version of the Mahalanobis distance that can be written by (xi− µ̂)T Σ̂

−1
(xi− µ̂) (Croux

et al., 2003). Here µ̂ and Σ̂ are a robust estimator of the mean vector and the covariance matrix for the
predictors x1, . . . , xn, respectively (Rousseeuw and Zomeren, 1990). The weighted LAD estimator
will not be seriously influenced by leverage points, because the weights for them are alleviated as
the value of the robust distance RDi increases. The resulting estimator in (2.5) provides a sparse
representation of a regression model and is also reliable to outliers or leverage points.

We can easily find the weighted LAD-Lasso in (2.5). We reformulate the data set {(y∗i , x∗i )} as

(
y∗i , x

∗
i
)
=

(wiyi,wixi) , for i = 1, . . . , n,
(0, nλi−nei−n) , for i = n + 1, . . . , n + p,

where e j is the unit vector having 0 except the jth element one (Wang et al., 2007). Then the weighted
LAD-Lasso estimator can be written by

β̂
wlad-lasso

(λ) = argminβ

n+p∑
i=1

∣∣∣y∗i − x∗i β
∣∣∣ . (2.6)

Consequently, we can use a standard LAD program (the function rq in R program) without computa-
tion effort.

2.2. Statistical properties

Under mild conditions on the errors and the predictor variables in (2.1) (See assumptions A and B
in Wang et al. (2007)), the weighted LAD-Lasso estimator in (2.6) yields the statistical properties as
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the
√

n-consistency and the sparsity. The properties of the LAD-Lasso estimator can be preserved,
because the weighted LAD-Lasso estimator can be modeled by ỹi = x̃T

i β + wiϵi, where x̃i = wixi and
ỹi = wiyi. Thus the statistical properties of the weighted LAD-Lasso estimation follow them of the
LAD-Lasso estimation.

Let β = (βT
1 ,β

T
2 )T where p0 is the length of β1. Without loss of generality, assume that β2 = 0. Its

corresponding weighted LAD-Lasso estimator is denoted by β̂
wlad-lasso

= (β̂
wlad-lasso T
1 , β̂

wlad-lasso T
2 )T .

Furthermore let an = max{λ j|β j , 0} and bn = min{λ j|β j = 0}. The theorem in Wang et al. (2007)
implies that the LAD-Lasso estimator has the same asymptotic distribution as the LAD estimator
obtained under the true model. Therefore, Theorem 1 in Giloni et al. (2006) yields the following
theorem.

Theorem 1. Suppose that (xi, yi), i = 1, . . . , n are independently identically distributed. Under the
assumptions A and B in Wang et al. (2007) if

√
nan → 0,

√
nbn → ∞ and maxi wi = O(1),mini wi =

O(1), then the weighted LAD-Lasso estimator β̂
wlad-lasso

= (β̂
wlad-lasso T
1 , β̂

wlad-lasso T
2 )T satisfies that

(i) P(β̂
wlad-lasso
2 = 0)→ 1 and

(ii)
√

n(β̂
wlad-lasso
1 − β1) is asymptotically p0-variate normal with mean 0 and covariance matrix

Q−1(XT WX)Q−1/(4 f (0)2), where Q = limn→∞ XT WX/n, W = diag(wi) and f (t) is the density
function of ϵi.

2.3. Tuning parameter

To find a good tuning parameters is an important issue in penalized estimation methods. The values of
tuning parameters can be chosen by optimizing the performance via cross-validation and generalized
cross validation (Fan and Li, 2001). Zou (2006) in the model (2.3) used the tuning parameters by the
reciprocal of the absolute value of the OLS estimate. Wang et al. (2007) used the tuning parameter
by minimizing a BIC-type objective function. The tuning parameter can be obtained by

λ̂ j =
log n
n|β̃ j|

, (2.7)

where β̃ j is the unpenalized LAD estimate for β j in the regression model (2.1). We use the tuning
parameter (2.7) where β̃ j is the unpenalized weighted LAD estimate.

3. Simulation

In this section we conducted simulation in various situations to show the effectiveness of the weighted
LAD-Lasso estimate which is resistant to heavy-tailed errors, outliers, or leverage points. We numer-
ically compare the proposed method with the LAD-Lasso estimate, the adaptive Lasso estimate, and
the best subset selection. All simulations are carried out using R codes.

We consider the model

y = xTβ + σϵ,

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and ϵ is generated from a heavy-tailed distribution. The component
of x is a multivariate normal with mean 0 and the correlation ρi j between xi and x j, where ρi j = 0.5|i− j|.
We considered three types of error distributions: the standard normal, the standard double exponential
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Table 1: Simulation results for t3 errors and no leverage points
σ n Method Correct Incorrect AMAD

wlad-lasso 3.48(1.17) 0.00(0.00) 0.310(0.118)

50 lad-lasso 3.50(1.14) 0.00(0.00) 0.300(0.123)
alasso 4.70(0.63) 0.02(0.14) 0.385(0.217)
oracle 5.00(0.00) 0.00(0.00) 0.282(0.131)
wlad-lasso 3.41(1.06) 0.00(0.00) 0.182(0.085)

1 100 lad-lasso 3.34(1.06) 0.00(0.00) 0.180(0.082)
alasso 4.84(0.40) 0.01(0.10) 0.233(0.147)
oracle 5.00(0.00) 0.00(0.00) 0.176(0.085)
wlad-lasso 3.31(1.11) 0.00(0.00) 0.141(0.055)

200 lad-lasso 3.32(1.21) 0.00(0.00) 0.140(0.054)
alasso 4.85(0.44) 0.00(0.00) 0.189(0.110)
oracle 5.00(0.00) 0.00(0.00) 0.135(0.058)
wlad-lasso 2.82(1.24) 0.01(0.10) 0.644(0.265)

50 lad-lasso 2.97(1.04) 0.00(0.00) 0.629(0.265)
alasso 4.63(0.68) 0.22(0.46) 0.791(0.469)
oracle 5.00(0.00) 0.01(0.10) 0.537(0.248)
wlad-lasso 3.11(1.24) 0.00(0.00) 0.370(0.145)

√
3 100 lad-lasso 3.01(1.21) 0.00(0.00) 0.373(0.146)

alasso 4.76(0.57) 0.05(0.22) 0.511(0.300)
oracle 5.00(0.00) 0.00(0.00) 0.345(0.159)
wlad-lasso 2.97(1.14) 0.00(0.00) 0.259(0.096)

200 lad-lasso 2.91(0.98) 0.00(0.00) 0.256(0.094)
alasso 4.75(0.54) 0.01(0.10) 0.355(0.159)
oracle 5.00(0.00) 0.00(0.00) 0.235(0.093)

and t distribution with 3 degrees of freedom (t3). Two different values for σ are tested for 1 and
√

3.
The sample sizes are considered by n = 50, 100 and 200. The considered model is used in Tibshirani
(1996) and Fan and Li (2001). We also consider the contaminated data with leverage points about
20% to show the robustness of the proposed estimator to leverage points.

Our simulation data consist of a training set and an independent test set. The regression coeffi-
cients in (2.1) are estimated for training data only, and the test error on the test data set is computed
(where the sample size of a test data set is 1000). For each case, 100 simulation replications are
carried out to evaluate the performance of the weighted LAD-Lasso estimate. The simulation results
are summarized in Tables 1–4 that include the column labeled “Correct” presents the average number
of correctly estimated zeros, and the column labeled “Incorrect” means the average number of coeffi-
cients erroneously set to zero in the same manner as done by Tibshirani (1996) and Wang et al. (2007).
In addition, Tables 1–4 include the average of the mean absolute deviations(AMAD) evaluated on the
test data set. The number in the parenthesis is the sample standard deviation.

The simulation results for t3 errors with no leverage points is summarized in Table 1. It can be
seen that the performance of the weighted LAD-Lasso (wlad-lasso) is similar to that of the LAD-
Lasso (lad-lasso), because the weights wi for the predictors may become 1 when the data set does not
have leverage points. Even though the adaptive Lasso (alasso) is very efficient in respect to model
complexity, the AMAD values of the adaptive Lasso are larger than them of the weighted LAD-Lasso
and the LAD-lasso. In addition, the AMAD values of the weighted LAD-Lasso draw closer to the
optimal AMAD values (oracle) as the sample size becomes larger regardless of the spread of the
errors. The results on the correct number of zeros implies that the estimation methods based on the
least absolute deviation errors are inclined to demonstrate overfitting effects and that the adaptive
lasso is the best estimation on variable selection procedures with a little bit of underfitting effects. As
expected the standard deviation of the AMAD values become larger when σ becomes larger.
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Table 2: Simulation results for the standard normal errors and 20% leverage points
σ n Method Correct Incorrect AMAD

wlad-lasso 2.93(1.27) 0.16(0.42) 1.321(1.006)

50 lad-lasso 1.49(0.95) 0.45(0.59) 3.164(0.195)
alasso 3.08(1.13) 1.44(0.76) 3.163(0.225)
oracle 5.00(0.00) 0.03(0.17) 0.681(0.313)
wlad-lasso 3.11(1.21) 0.02(0.14) 0.715(0.672)

√
3 100 lad-lasso 1.25(0.96) 0.30(0.56) 3.017(0.130)

alasso 2.47(1.05) 0.94(0.75) 3.002(0.134)
oracle 5.00(0.00) 0.00(0.00) 0.463(0.203)
wlad-lasso 2.88(1.27) 0.01(0.10) 0.461(0.289)

200 lad-lasso 1.11(0.82) 0.11(0.35) 2.927(0.090)
alasso 1.79(1.16) 0.52(0.69) 2.905(0.090)
oracle 5.00(0.00) 0.00(0.00) 0.367(0.138)

Table 3: Simulation results for the standard double exponential errors and 20% leverage points
σ n Method Correct Incorrect AMAD

wlad-lasso 2.76(1.14) 0.18(0.46) 1.226(1.042)

50 lad-lasso 1.58(0.98) 0.52(0.63) 3.187(0.220)
alasso 3.37(0.97) 1.57(0.79) 3.182(0.223)
oracle 5.00(0.00) 0.02(0.14) 0.615(0.370)
wlad-lasso 3.34(1.14) 0.01(0.10) 0.627(0.614)

√
3 100 lad-lasso 1.28(0.94) 0.31(0.53) 3.054(0.142)

alasso 2.61(1.05) 0.97(0.78) 3.044(0.140)
oracle 5.00(0.00) 0.00(0.00) 0.416(0.186)
wlad-lasso 3.20(1.17) 0.00(0.00) 0.512(0.531)

200 lad-lasso 1.01(0.82) 0.14(0.40) 2.923(0.098)
alasso 2.14(1.14) 0.78(0.77) 2.925(0.102)
oracle 5.00(0.00) 0.00(0.00) 0.329(0.140)

We next conducted the simulation for three types of errors with 20% leverage points. The results
for σ = 1 and

√
3 are similar. We summarized the results in Tables 2 and 4 for only σ =

√
3, because

the data for
√

3 are much contaminated by regression outliers or leverage points.
Table 2 summarizes the simulation results for the standard normal errors and 20% leverage points.

Seeing “Correct” term implies that in model complexity the weighted LAD-lasso and the adaptive
Lasso are comparable when the sample size is small. However, the weighted LAD-lasso method
is better than the adaptive Lasso method as the sample size increases. If we only consider the model
complexity, the LAD-lasso is the worst sparse estimation among three estimations. The adaptive lasso
demonstrates underfitting effects in the sample size 50, because the average number of incorrect zeros
is 1.44 in Table 2. Even though the weighted LAD-Lasso has underfitting effects in small sample
size which is the smallest effects among three methods, the effect disappears when the sample size
becomes larger. Table 2 shows that in model error the weighted LAD-Lasso is the most efficient
estimation regardless of the spread of errors and the sample size, since we considered the estimation
method reducing the influence of leverage points.

Table 3 presents the simulation results for the standard double exponential errors and 20% leverage
points are summarized. In addition, Table 4 considers the t3 errors and 20% leverage points. The
results are similar to Table 2. Thus, the weighted LAD-Lasso performs amazingly well for thin- or
thick-tailed errors even when the predictor variables have leverage points.

Tables 1 to 4 shows that the weighted LAD-Lasso is very robust to heavy-tailed errors and leverage
points. Especially the weighted LAD-Lasso presents high prediction accuracy among compared esti-
mators. When the data with large sample size have leverage points, the weighted LAD-Lasso provides
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Table 4: Simulation results for t3 errors and 20% leverage points
σ n Method Correct Incorrect AMAD

wlad-lasso 2.56(1.21) 0.22(0.46) 1.475(1.096)

50 lad-lasso 1.71(0.98) 0.55(0.66) 3.207(0.226)
alasso 3.54(0.95) 1.72(0.79) 3.286(0.274)
oracle 5.00(0.00) 0.06(0.28) 0.714(0.377)
wlad-lasso 3.05(1.13) 0.03(0.17) 0.587(0.597)

√
3 100 lad-lasso 1.35(0.86) 0.29(0.50) 2.988(0.167)

alasso 2.83(1.04) 1.15(0.85) 3.009(0.186)
oracle 5.00(0.00) 0.00(0.00) 0.518(0.227)
wlad-lasso 2.74(1.15) 0.01(0.10) 0.570(0.445)

200 lad-lasso 1.00(0.71) 0.08(0.27) 2.935(0.097)
alasso 2.26(1.09) 0.79(0.74) 2.951(0.124)
oracle 5.00(0.00) 0.00(0.00) 0.404(0.157)

a sparse model rather than the adaptive Lasso. Thus, the weighted LAD-Lasso is a best estimator in
the sense of prediction accuracy and model complexity.

4. Concluding Remarks

In this paper we proposed a robust estimator based on a weighted least absolute deviation criterion
with penalizing the l1 norm of regression coefficients. We show good performance from simulation
under various situations by combining the tail shape of errors, the strength of spread of errors and
leverage points. Especially the proposed estimator is very robust to the contaminated data by heavy
tailed errors, outliers, or leverage points.
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