Development of artificial intelligence is expected to revolutionize today's medicine. In fact, medicine was one of the areas to which advances in artificial intelligence technology were first applied. Recently, state-of-the-art artificial intelligence, especially deep learning technology, has been actively utilized to treat cancer patients and analyze medical image data. Application of artificial intelligence has the potential to fundamentally change various aspects of medicine, including the role of human doctors, the clinical decision-making process, and even overall healthcare systems. Facing such fundamental changes is unavoidable, and we need to prepare to effectively integrate artificial intelligence into our medical system. We should re-define the role of human doctors, and accordingly, medical education should also be altered. In this article, we will discuss the current status of artificial intelligence in medicine and how we can prepare for such changes.
Researches on the Artificial Intelligence has been explosively activated in various fields since the advent of AlphaGo. Particularly, researchers on the application of multi-layer neural network such as deep learning, and various machine learning algorithms are being focused actively. In this paper, we described a development of an artificial intelligence Janggi game based on reinforcement learning algorithm and MCTS (Monte Carlo Tree Search) algorithm with accumulated game data. The previous artificial intelligence games are mostly developed based on mini-max algorithm, which depends only on the results of the tree search algorithms. They cannot use of the real data from the games experts, nor cannot enhance the performance by learning. In this paper, we suggest our approach to overcome those limitations as follows. First, we collects Janggi expert's game data, which can reflect abundant real game results. Second, we create a graph structure by using the game data, which can remove redundant movement. And third, we apply the reinforcement learning algorithm and MCTS algorithm to select the best next move. In addition, the learned graph is stored by object serialization method to provide continuity of the game. The experiment of this study is done with two different types as follows. First, our system is confronted with other AI based system that is currently being served on the internet. Second, our system confronted with some Janggi experts who have winning records of more than 50%. Experimental results show that the rate of our system is significantly higher.
최근 대학수업에서 공유된 교육목표를 토대로 집단을 이루어 함께 학습하는 협력학습이 강조되고 있으며 그에 따른 집단지성에 대한 관심이 확산되고 있다. 이에 따라 협력학습에서 집단지성을 높일 수 있는 변인에 대한 연구의 필요성도 확대되고 있다. 본 연구는 학습자의 개인변인으로 개인창의성, 팀관련 변인으로 팀신뢰와 팀효능감, 학습성과변인으로 집단지성을 선정하여 구조적 관계를 살펴보았다. 이를 위해 협력학습에 참여한 경기지역 A대학교, 대전지역 H대학교 및 충청지역 K대학교의 학부생 770명을 대상으로 자료를 수집하였으며 구조방정식을 통해 변인 간의 관련성을 분석하였다. 연구결과, 개인창의성은 팀효능감과 집단지성에 긍정적 영향을 미쳤으며 팀신뢰는 팀효능감과 집단지성에 긍정적 영향을 미쳤다. 또한 팀효능감은 집단지성에 긍정적 영향을 미쳤다. 본 연구는 향후 대학 협력학습의 수업설계 및 운영전략을 수립하기 위한 기초자료로 활용될 수 있을 것이다.
4차 산업혁명과 ICT 기술의 중요성이 증가함에 따라 소프트웨어 중심 사회가 초래되었다. 기존 소프트웨어 교육은 학습 환경구성에 제한적이었으며, 초기에 많은 비용이 발생하였다. 이를 해결하기 위하여 웹 컴파일러를 활용하는 형태의 학습 방법이 개발되었다. 웹 컴파일러는 다양한 소프트웨어 언어를 지원하며, 컴파일 결과를 사용자에게 웹을 통해 보여준다. 하지만 4차 산업혁명의 핵심기술인 인공지능에 대한 웹 컴파일러는 아직 미비한 상황이다. 본 논문에서는 구글 인공지능 라이브러리인 텐서플로우 기반의 웹 컴파일러를 설계, 구현하였다. nodeJS 기반의 서버에 텐서플로우와 텐서플로우 서빙, 파이썬 주피터를 구현하고, meteorJS 기반의 웹 서버를 구축하여 인공지능 학습을 위한 시스템을 구현하였다. 소프트웨어 중심 사회에서 인공지능 학습을 위한 도구로써의 활용이 가능할 것으로 기대된다.
인공지능이 글로벌 경쟁력 원천 기술로 부각되면서 정부도 자율주행차, 드론, 로봇 등 미래 신산업의 기반 기술이 되는 인공지능을 전략적으로 육성하고 있다. 국내 인공지능 연구 및 서비스는 네이버와 카카오를 중심으로 출시되었으나 해외에 비하면 규모나 수준이 미약한 편이다. 최근, 딥러닝 (deep learning)은 최근 음성인식과 영상인식을 비롯한 다양한 패턴인식 분야에서 혁신적인 성능을 기록하면서 많은 연구가 진행되고 있다. 그 뿐만 아니라 딥러닝은 초창기부터 산업계의 큰 관심을 끌어 구글이나 마이크로소프트, 삼성전자 등 글로벌 정보기술 회사에서 상용제품에 딥러닝 기술을 성공적으로 적용하고 있고 계속 연구개발을 진행하고 있어 대중매체에서도 관심을 가지고 주목하고 있다. 이러한 선행연구를 바탕으로 주목 받고 있는 인공지능에 대해 살펴보도록 하겠다.
International Journal of Computer Science & Network Security
/
제24권7호
/
pp.108-117
/
2024
The selection and recommendation of a suitable job applicant from the pool of thousands of applications are often daunting jobs for an employer. The recommendation and selection process significantly increases the workload of the concerned department of an employer. Thus, Resume Classification System using the Natural Language Processing (NLP) and Machine Learning (ML) techniques could automate this tedious process and ease the job of an employer. Moreover, the automation of this process can significantly expedite and transparent the applicants' selection process with mere human involvement. Nevertheless, various Machine Learning approaches have been proposed to develop Resume Classification Systems. However, this study presents an automated NLP and ML-based system that classifies the Resumes according to job categories with performance guarantees. This study employs various ML algorithms and NLP techniques to measure the accuracy of Resume Classification Systems and proposes a solution with better accuracy and reliability in different settings. To demonstrate the significance of NLP & ML techniques for processing & classification of Resumes, the extracted features were tested on nine machine learning models Support Vector Machine - SVM (Linear, SGD, SVC & NuSVC), Naïve Bayes (Bernoulli, Multinomial & Gaussian), K-Nearest Neighbor (KNN) and Logistic Regression (LR). The Term-Frequency Inverse Document (TF-IDF) feature representation scheme proven suitable for Resume Classification Task. The developed models were evaluated using F-ScoreM, RecallM, PrecissionM, and overall Accuracy. The experimental results indicate that using the One-Vs-Rest-Classification strategy for this multi-class Resume Classification task, the SVM class of Machine Learning algorithms performed better on the study dataset with over 96% overall accuracy. The promising results suggest that NLP & ML techniques employed in this study could be used for the Resume Classification task.
문제기반학습(Problem-based Learning)의 효과성 제고를 위해서는 학습지원 전략으로서 스캐폴더의 역할이 요청된다. 집단지성(collective intelligence)은 사용자들의 지식, 정보, 경험, 가치 등을 종합하고 이를 바탕으로 자신의 행동에 대한 방향을 결정하고 지속적으로 수정하며 문제 해결방법을 제공받는다는 측면에서 스캐폴딩을 제공한다. 교수학습 상황에서 학습자의 주도적, 자발적, 적극적 참여를 강조하고 있는데, 과연 집단지성이 효과적이고 매력적인 학습전략의 대안이 되는지 판단하고자 본 연구가 수행되었다. 보다 구체적으로 본 연구는 웹에서 집단지성이 스캐폴더의 역할을 어떻게 수행하고 있는지, 또한 학습자에게 어떤 유형의 스캐폴딩을 제공하는지 밝히고자 수행되었다. 연구 결과 집단지성은 정의적 측면에서는 학습자에게 학습태도, 자신감, 흥미 등 긍정적인 영향을 미쳤지만 인지적 측면에서는 학습자의 학년, 학습수준에 따라 상이한 영향을 미치는 것을 확인할 수 있었다. 집단지성이 학습자에게 긍정적인 영향을 미치는 경우 인지적 측면에서 설명, 방향제시, 예시, 피드백 등과 같은 스캐폴딩 유형을 확인할 수 있었고, 정의적 측면에서 긍정적 반응, 격려 등과 같은 스캐폴딩 유형이 나타났다.
이 연구의 목적은 국내외 인공지능을 활용한 수학교육 서비스의 주요 기능과 인공지능의 활용 가능성을 알아보는 것이다. 이 연구를 위해 최근 5년 이내에 발행한 자료를 중심으로 출판물 및 인터넷에서 "인공지능", "人工知能", "Artificial Intelligence" "AI". "수학교육"의 키워드를 독립적으로 또는 조합하여 검색하면서 관련 논문 및 보고서 그리고 인터넷 자료 등을 수집하여 분석하였다. 연구 결과, 수학교육을 위한 인공지능 서비스는 대부분 학습자의 개인별 수학 맞춤형 학습을 지원하고, 인간 수학 교사를 지원하기 위한 보조적인 역할로 규정하며, 인지적인 측면뿐만 아니라 정의적인 측면의 기술을 고도화하고 있었다. 제언으로, 정교한 수학 계통체계의 구축을 위한 연구, 인공지능 기술을 발굴하여 수학교육에 활용하는 방안, 인공지능 활용을 위한 양질의 수학 콘텐츠를 개발, 수학교육을 위한 클라우드 기반의 종합 시스템 구축과 운영이 필요함을 주장하였다.
Park, Jaebok;Yoo, Seungmok;Yoon, Seokjin;Lee, Kyunghee;Cho, Changsik
ETRI Journal
/
제41권6호
/
pp.760-770
/
2019
Based on the growing demand for neural network technologies, various neural network inference engines are being developed. However, each inference engine has its own neural network storage format. There is a growing demand for standardization to solve this problem. This study presents interworking techniques for ensuring the compatibility of neural networks and data among the various deep learning frameworks. The proposed technique standardizes the graphic expression grammar and learning data storage format using the Neural Network Exchange Format (NNEF) of Khronos. The proposed converter includes a lexical, syntax, and parser. This NNEF parser converts neural network information into a parsing tree and quantizes data. To validate the proposed system, we verified that MNIST is immediately executed by importing AlexNet's neural network and learned data. Therefore, this study contributes an efficient design technique for a converter that can execute a neural network and learned data in various frameworks regardless of the storage format of each framework.
CHUNG, Myung-Ae;HAN, Dong Hun;AHN, Seongdeok;KANG, Min Soo
한국인공지능학회지
/
제10권2호
/
pp.7-11
/
2022
OLED displays cannot be used permanently due to burn-in or generation of dark spots due to degradation. Therefore, the time when the display can operate normally is very important. It is close to impossible to physically measure the time when the display operates normally. Therefore, the time that works normally should be predicted in a way other than a physical way. Therefore, if you do computer simulations based on artificial intelligence, you can increase the accuracy of prediction by saving time and continuous learning. Therefore, if we do computer simulations based on artificial intelligence, we can increase the accuracy of prediction by saving time and continuous learning. In this paper, a dataset in the form of development from generation to diffusion of dark spots, which is one of the causes related to the life of OLED, was generated by applying the finite element method. The dark spots were generated in nine conditions, such as 0.1 to 2.0 ㎛ with the size of pinholes, the number was 10 to 100, and 50% with water content. The learning data created in this way may be a criterion for generating an artificial intelligence-based dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.