
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

108

Manuscript received July 5, 2024
Manuscript revised July 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.7.13

Resume Classification System using Natural Language
Processing & Machine Learning Techniques

Irfan Ali†, Nimra†, Ghulam Mujtaba†, Zahid Hussain Khand†, Zafar Ali†, and Sajid Khan†
irfan.memon@iba-suk.edu.pk nimra.mscsf19@iba-suk.edu.pk mujtaba@iba-suk.edu.pk zahid@iba-suk.edu.pk zafar@iba-suk.edu.pk

sajidkhan@iba-suk.edu.pk
†Center of Excellence for Robotics, Artificial Intelligence, and Blockchain, Department of Computer Science, Sukkur

IBA University, Sukkur-65200, Sindh Pakistan

Abstract
The selection and recommendation of a suitable job applicant from
the pool of thousands of applications are often daunting jobs for
an employer. The recommendation and selection process
significantly increases the workload of the concerned department
of an employer. Thus, Resume Classification System using the
Natural Language Processing (NLP) and Machine Learning (ML)
techniques could automate this tedious process and ease the job of
an employer. Moreover, the automation of this process can
significantly expedite and transparent the applicants’ selection
process with mere human involvement. Nevertheless, various
Machine Learning approaches have been proposed to develop
Resume Classification Systems. However, this study presents an
automated NLP and ML-based system that classifies the Resumes
according to job categories with performance guarantees. This
study employs various ML algorithms and NLP techniques to
measure the accuracy of Resume Classification Systems and
proposes a solution with better accuracy and reliability in different
settings. To demonstrate the significance of NLP & ML techniques
for processing & classification of Resumes, the extracted features
were tested on nine machine learning models Support Vector
Machine - SVM (Linear, SGD, SVC & NuSVC), Naïve Bayes
(Bernoulli, Multinomial & Gaussian), K-Nearest Neighbor (KNN)
and Logistic Regression (LR). The Term-Frequency Inverse
Document (TF-IDF) feature representation scheme proven
suitable for Resume Classification Task. The developed models
were evaluated using F-ScoreM, RecallM, PrecissionM, and overall
Accuracy. The experimental results indicate that using the One-
Vs-Rest-Classification strategy for this multi-class Resume
Classification task, the SVM class of Machine Learning
algorithms performed better on the study dataset with over 96%
overall accuracy. The promising results suggest that NLP & ML
techniques employed in this study could be used for the Resume
Classification task.
Keywords:
Resume Classification, Natural Language Processing, Machine
Learning, Text Classification, Recommender System

1. Introduction

Internet-based recruiting systems have been rapidly
adopted by recruiters in recent years. The rapid growth of
the internet caused an identical growth in quantity of
obtainable online information [1]. As a result, information
is widely available. Contrary to this, information became
overloaded and resulted in the need for information

management [2, 3]. Moreover, the ever-increasing
unemployment rate in developing countries like Pakistan
results in considerable amount of job applications for a
vacant position[4]. Thus, the selection of suitable job
applicants from the pool of thousands applications is often
a daunting job for an employer. Recruiters need to screen
through a large amount of data to select the most suitable
application from the pool. Thus, it significantly increases
the workload of the concerned department of Recruiter [5].
Moreover, this process involves the engagement of
considerable Human Resources and requires rigorous
efforts and resources to finalize the most suitable applicant
for further recruiting process. If the recruiters can figure out
the non-relevant profiles at the earlier stages of the hiring
process, this can significantly save time and money [6].

The Resume is a portfolio document developed by job
applicants to present the relevant details for the vacant job.
In this document, the applicant provides personal details,
Educational details, accomplishments, competencies, skills,
and experiences. This resume helps recruiters to shortlist the
applicant from the pool of applications as it provides the
complete picture of the applicant’s competencies and skills.
The resume screening demands domain knowledge to
understand the suitability and relevance of an applicant for
the advertised job vacancy. However, the current global
economic condition that companies face of getting less
capital to speculate within their HR department, while
desperate to ensure that they are choosing the highly
competitive applicant fitted to the job description [1]. Thus,
recruiters are facing three main challenges:

 Making sense of Resume: This is a fact that Resumes

in the market have no defined standard. Every resume
may have a different structure in the pool of
applications. Thus, HR needs to manually go through
each resume to find out the best resume.

 Mapping resume to the job description: This is based
on mapping the applicant’s Resume to the requirements
criteria provided by the recruiter. This process involves
detailed screening and requires domain experts to
efficiently perform this task.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

109

 Managing the cost: For, Screening and selection,
Recruiters need to adopt automated processes with
mere human involvement to save time and money.

Hence, Machine Learning based automated Resume
Classification Systems can be used to classify the Resumes
according to the job category. This approach can automate
the tedious process of Resume Selection and support
recruiters to overcome the above-mentioned challenges.
Moreover, the automation of this process can significantly
expedite the applicants’ shortlisting process and also
transparent the selection process with mere human
involvement.

Text classification (TC) is a technique to
automatically classify the predefined classes relevant to a
particular text document [7, 8]. TC is one of the most
fundamental tasks of Natural Language Processing (NLP).
TC is carried out with the involvement of Supervised
Machine Learning techniques. These techniques require
text representation as a fixed-length feature vector [7]. Thus,
Preprocessing and Feature Engineering are the most
important and fundamental steps for such text classification
tasks where we apply various feature extraction and feature
representation techniques [9].

Feature extraction typically finds the set of most
informative features whereas feature representation figures
out the most suitable way to represent the values of
extracted features. The most widely used feature extraction
techniques for text documents are N-grams, Bag of Words
(BoW), and Word-to-Vec. Every extracted feature assigned
the numeric value using different representation techniques
such as Binary and TF-IDF. Every feature engineering task
has some pros and cons. Hence, the job of a Machine
Learning Engineer is to find the most useful technique for
the problem under consideration. Nevertheless, various
Machine Learning approaches have been proposed to
develop Resume Classification Systems in literature.
However, this study aims at developing an ML-based
system that classifies the Resumes according to job
categories. The study applies the Supervised Machine
Learning approach for resume classification to correctly
classify 25 different job categories resumes belong to. The
dataset has 962 labeled resumes’ categories to train the
classifier. Thus, various multi-class classification
algorithms and NLP techniques are employed to measure
the accuracy of Resume Classification using performance
metrics such as overall accuracy, F-ScoreM, PrecisionM, and,
RecallM. This study proposes an ML-based Resume
Classifier with better accuracy and performance guarantees.

The resume is an official and formal document
used mainly for demonstrating the brief profile of a job
applicant. The resume contains information related
education, skills, experience, achievements, and portfolio of
a job applicant. The resume often used as an effective tool
to assess the overall suitability of an aspirant for the desired

job. Moreover, in response to job postings applicants submit
Resume as a formal document for job application
consideration. The employer receives hundreds of Resumes
for mere vacancies and finds it difficult to categorize and
classify to a suitable job vacancy. Thus, this study attempts
at developing an efficient and accurate Resume
Classification System to ease the job of employers.

The rest of the paper is organized as follows.
Section 2 presents the Review of related studies, Section3
describes the proposed Methodology to accomplish the
objectives, Section 4 presents and discusses the findings of
the study, and Section 5 presents the major limitations of
the study and proposed future work and finally, section 6
concludes the study.

2. Related Work

In recent years, Machine Learning (ML) based text
classification(TC) techniques have been widely employed
in various domains [10] such as Sentiment analysis [11, 12],
E-Commerce portals [13, 14], Email classification [15],
Human Resource Management [2] and bioinformatics [16,
17]. In this study, ML-based text classification techniques
are employed in the Human Resource Management domain.
Various NLP and ML classification techniques have been
employed to predict the category of Resume.

Several studies have proposed the Machine Learning
based system for Human Resource Management and
recruiting processes. For instance, the study [18] designed
the approach for Resume ranking that uses that layered
information retrieval framework to parse the resumes. The
goal of this study was to help recruiters to find out the
relevant job applicant for a job opening. Another study [19]
designed the personalized approach for Resume-job
matching that offers the statistical similarity for resume
ranking according to the available jobs. This study could
have been more generalized to recruiters as well as for job
seekers. Employers can make use of this system to find the
relevant resumes whereas job seekers can use to search the
most relevant job matches their resumes. The fuzzy-based
model used in [20] to evaluate the relevancy of a resume as
compared to the job description. All the above-mentioned
studies are working for document similarity by comparing
the resume to the job description. However, few studies
employed Supervised Text Classification Techniques to
predict the category of Resume.

Perhaps, the most related work to the proposed
approach is of [21]. In this wok, NLP and ML techniques
were employed to predict the domain of resumes. This study
aimed to allocate the relevant project to recruits. The study
proposed the Named Entity Recognition (NER) approach
coupled with various classification models such as Logistic
Regression, K-Nearest Neighbors for the classification.
Besides this, the study proposed an ensemble learning-
based voting classifier that was retrained after a fixed

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

110

interval. Hence, the number of votes for each classifier was
modified. The experimental results revealed that a voting
based classifier produced 91.2% accuracy in predicting the
categories while the accuracy was 84.2% without retraining.
Another related study is of [22], in which the Convolutional
Neural Network (CNN) was used to classify Resumes into
27 different job categories. In this study, CNN classifier was
trained on word2Vec pre-trained representations to
determine the category of Resume. This approach achieved
40.15% accuracy on resume classification and 74.88%
accuracy on the job classification task. However, the study
only used job summary text for classification and
considered only one base method of fast Text for
comparison of the performance.

Hence, both the aforementioned studies had some
major limitations. The aforementioned studies had
employed various classification techniques whereas failed
to evaluate various preprocessing techniques for the
proposed classifiers which may lead to low accuracy of the
classifier. Further, only overall accuracy as a measure used
for evaluation and failed to use various evaluation metrics
such as F-Score, Precision, and Recall to evaluate the
learning efficiency of classifiers.

It is evident from the above-mentioned studies that
approaches used mainly suffered with two problems lower
accuracy and performance comparison. Besides this, very
few ML models were employed for the Resume
Classification task and accuracy as the only measure used
for performance. Moreover, the features extraction and
representation techniques were not explored to overcome
the less accuracy problem. To overcome the limitations of
previously proposed studies, this study will use different
NLP and Machine Learning techniques to improve the
efficiency of classifiers and various performance matrices
will be used for model evaluation. Also, various feature
extraction and representation techniques would be
employed for discriminative features contributing to better
classification. Further, this study will provide
discriminative features to several machine learning models,
and various performance matrices such as PrecisionM,
RecallM, and F-ScoreM will be used for performance
measuring.

3. Methodology

This section discusses the proposed Methodology for
building an efficient and accurate Resume Classification
System in detail. To achieve the objective of Resume
Classification, Natural Language Processing (NLP) and
Machine Learning (ML) techniques employed using the
best practices. The overall methodology designed approach
devised in five stages as illustrated in figure 1: i) Data
Collection and visualization ii) Preprocessing iii) Feature
Engineering iv) Model Construction and v) Model

Evaluation and testing in a real-time environment using
Graphical User Interface (GUI).

Fig. 1 The proposed methodology for resume classification

3.1 Data Collection and Visualization
The Resumes with Job Categories dataset was

collected from an online data repository. The dataset is in
Comma Separated Values (CSV) file format and has three
columns namely ID, Category, and Resume’s Text. The ID,
Category and Resume Columns represent Index, Job
Category/Field, and content of Resume respectively. The
dataset contains 962 parsed and labeled resumes in 25
different job categories. The number of Resume instances
for each class job category illustrated in figure 2 and
category-wise distribution (percentage) of resume instances
plotted in figure 3 using Python Matplotlib library. The
visual evidence in Figure 2 shows that each job category has
a different number of resume instances and this can lead to
an imbalanced data problem. Moreover, the data for two
categories namely Java Developer and Testing has the
highest resumes instances and can be considered as biased
class categories. Whereas, the resume instances for some
categories such as Advocate, Civil Engineer, and SAP
Developer are relatively less than some other categories for
instance Java Developer. However, the category-wise total
distribution in Figure 3 illustrates the overall representation
of resume instances within the percentage range of (2.1 to
8.7%) in the dataset.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

111

Fig. 2 Resume instances for each job category

Fig. 3 Category-wise total distribution of Resume instances

3.2 Data Preprocessing
The Data preprocessing involves steps to

transform raw data into meaningful information for the
Machine Learning task. In the case of textual data for text
classification, these steps involve cleaning raw text data,
removing the unnecessary or meaning-less data, removing
the repetitive (redundant) data, removing the missing (null)
values, and transforming data to a common scale. To
preprocess the resume’s textual data for the Resume
Classification task following key steps were performed.

3.2.1 Data Cleansing
The dataset contains the parsed resumes from different

formats such as PDF, DOC, DOCX in a CSV format has a
lot of unnecessary and unprocessed data in the resume
column. Thus, the major efforts were required to preprocess
the data and make it ready for Text Classification. In the
data preprocessing step, the less informative text was
cleaned using the Natural Language Processing Took Kit -
NLTK [21] for stop words removal and Python 3.7.3
Regular Expressions. The following key tasks were
performed for data preprocessing using the customized
written program function in python as illustrated in Table 1.

I. The textual content of resumes was converted to
lowercase

II. The special characters, punctuations, brackets, URLs,
Email addresses, mentions, hash tags, apostrophes,
leading & trailing characters, extra white spaces, and
Non-ASCII characters were removed from the
Resume’s text

III. The masking was applied special escape sequences
such as \n, \t, \a, \b, and so on

IV. The numbers were masked
V. The string fragmentations were masked

VI. The word phrases in short form such as I’ll to I will
were converted to their full forms

VII. Similar attributions were performed on
unclean/unprocessed on raw resume’s text data

Table 1 Method or Dataset cleaning
CleanResume (resumeText):

1. resumeText = re.sub('http\S+\s*', ' ', resumeText) # To remove
URLs (Http, Https)

2. resumeText = re.sub('RT|cc', ' ', resumeText) # To remove RT
and cc

3. resumeText = re.sub('#\S+', '', resumeText) # To remove
possible hashtags

4. resumeText = re.sub('@\S+', ' ', resumeText) # To remove
possible mentions and email addresses

5. resumeText = re.sub('[%s]' %
re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|]~"""), ' ',
resumeText) # To remove punctuations, brackets and special
characters

6. resumeText = re.sub(r'[^\x00-\x7f]',r' ', resumeText) # To
replace Non-ASCII Characters with single space

7. resumeText = re.sub('\s+', ' ', resumeText) # To remove extra
whitespaces

8. resumeText = resumeText.lower() #To convert text to lowercase
9. resumeText = re.sub(r"what's", "what is ", resumeText) # To

chanage what's to what is
10. resumeText = re.sub(r"\'s", " ", resumeText) # To remove

apposophy s
11. resumeText = re.sub(r"\'ve", " have ", resumeText) # To change

've to have
12. resumeText = re.sub(r"can't", "can not ", resumeText) # To

change can't to can not
13. resumeText = re.sub(r"n't", " not ", resumeText) # To change n't

to not
14. resumeText = re.sub(r"i'm", "i am ", resumeText) # To change

i'm to i am
15. resumeText = re.sub(r"\'re", " are ", resumeText) # To change 're

to are
16. resumeText = re.sub(r"\'d", " would ", resumeText) # To change

'd to would
17. resumeText = re.sub(r"\'ll", " will ", resumeText) # To change 'll

to will
18. resumeText = re.sub(r"\'scuse", " excuse ", resumeText) # To

change 'scuse to excuse
19. resumeText = re.sub('\W', ' ', resumeText) # To replace

whitespaces
20. resumeText = resumeText.strip(' ') # To strip text (removing

leading and trailing characters)
21 return resumeText

3.2.2 Removal the stop words
Stop words removal is one of the most essential steps

in data preprocessing. Stop words such as 'is', ‘each’, 'and'
and so on appear most often in any textual data. However,

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

112

these most frequently occurring words in a text document
are not the informative features (tokens) for any classifier.
Thus, these stop words should be removed from the corpus
for the classification model. The stop words from the
resume’s text column were removed by performing the
following steps using the python programming:

I. The word tokenization was performed on the
resume’s text using NLTK library and token were
stored in an array

II. The standard English language stop words were
imported using NLTK corpus and compared with
each element in the tokenized array

III. If any element of the tokenized array was found in
the list of NLTK stop words, that particular
element (tokenized word) was removed

IV. Repeated this process for all the tokens
V. The final tokenized elements array did not contain

any stop word
To visualize the stop words removal process, the word

cloud of most frequently occurring words in the corpus of
resumes was generated using the python word cloud feature
as illustrated in figure 4. It can be observed that the word
cloud now contains more informative words other than
frequently occurring stop words and these words would be
more meaningful for classifiers to learn.

Fig. 4 Word Cloud of most frequent words in the cleaned dataset

3.2.3 Stemming & Lemmatization
Stemming & Lemmatization are known as Text

Normalization or sometimes Word Normalization
techniques in Natural Language Processing (NLP). The
purpose of these techniques is to decrease word inflection
in the corpus of classification text by mapping the group of
words to the same root stem. Specifically, stemming and
lemmatization remove the prefixes and suffixes (affixes)
such as (-es, -s, -ed, in-, un-, -ing, etc) from words which
result in inflectional (changing/deriving meaning of words).
For instance, the stem (root) word for Plays, Playing, and
Played is Play so the stemming and lemmatization
techniques would map these words in the corpus of
classification text to root (stem) word.

൭
𝑊𝑜𝑟𝑘𝑠
𝑊𝑜𝑟𝑘𝑖𝑛𝑔
𝑊𝑜𝑟𝑘𝑒𝑑

൱ → ൬
𝑊𝑜𝑟𝑘

ሺ𝑟𝑜𝑜𝑡 𝑠𝑡𝑒𝑚 𝑤𝑜𝑟𝑑ሻ
൰

൭
𝑎𝑚
𝑎𝑟𝑒
𝑖𝑠
൱ → ൬

𝑏𝑒
ሺ𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑓𝑜𝑟𝑚𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑟𝑏 െ 𝑡𝑜 𝑏𝑒ሻ

൰

൭
𝐶𝑎𝑟𝑠
𝐶𝑎𝑟ᇱ𝑠
𝐶𝑎𝑟𝑠′

൱ → ൬
𝑏𝑒

ሺ𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑎𝑛𝑑 𝑠𝑖𝑚𝑝𝑙𝑒 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑛𝑜𝑢𝑛ሻ
൰

Using the above mappings, a sentence could be normalized
using the stemming and lemmatization techniques as follow;

ሺ𝑇ℎ𝑒 𝑏𝑜𝑦ᇱ𝑠 𝑐𝑎𝑟𝑠 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑜𝑙𝑜𝑟𝑠 ሻ
→ ሺ𝑇ℎ𝑒 𝑏𝑜𝑦 𝑐𝑎𝑟 𝑏𝑒 𝑑𝑖𝑓𝑓𝑒𝑟 𝑐𝑜𝑙𝑜𝑟ሻ

The Natural Language Tool Kit (NLTK) library in
python offers the implementation of stemming and
lemmatization techniques in Python with different settings.
However, unlike stemming offered by the NLTK library in
Python, the lemmatization reduces the inflected words
properly by ensuring the root word belongs to the language.
Thus, we implemented lemmatization on our Resume’s text
corpus as the Resumes are more formal documents. The
code implementation of lemmatization implementation
presented in below code snippet;

Fig. 5 Lemmatization - Code Snippet

3.2.4 Label Encoding
The label encoding technique handles the

categorical values of variables in the Machine Learning
Model. The label encoding technique assigns a unique
integer value to a categorical variable. To make raw text
data ready for the machine learning model the label
encoding was done to assign a numerical label to all
categories shown in figure 2. The Scikit-learn Label
Encoder used for the mentioned purpose. Hence, the label
encoder on the Category field of the data was applied.
Figure 6 shows the code snippet for Label encoding.

Fig. 6 Label Encoding - Code Snippet

3.3 Feature Engineering
The feature engineering helps to extract, formulate, and
represent the set of most discriminative (informative)

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

113

features from the corpus of text for the classification task.
After data cleaning and preprocessing, the resume’s text
data has an informative set of words. However, figure 4
shows the list of most frequent words in our dataset. It
shows dataset does not contain stop words and other less
informative words now. Therefore, we use different
methods for feature extraction however, The Term
Frequency – Inverse Document Frequency (TF-IDF)
features representation works best in our dataset. Thus, the
TF-IDF technique used for representing the value of each
extracted feature.

3.3.1 Feature Extraction & Master Feature Creation
After applying the preprocessing step on the data, the

dataset contains the words that are important features for the
classification. To demonstrate the significance, different
ways for feature extraction namely, BoW, Word Vectorizer,
N-Gram were used and tested. However, our model showed
the best results on Word vectorizer implementation using
the TF-IDF feature representation. Steps for feature
extraction are as follows:
I. Design Vocabulary: Here, we made the list of all words

presented in the Resume field of all records.
II. Document Vector: In this step, we represent each word

as a feature and make a separate field for each word of
vocabulary. The objective of this step is to map each
Resume free text into the vector.

3.3.2 Feature Representation
This step aims to allocate an arithmetic value to each of

the extracted features in the vector. The different methods
for representing the features like BOW, CountVectorizer,
and N-gram were employed however our model yielded the
best accuracy on the TF-IDF vectorizer. Therefore, TF-IDF
[23] used for representing the value of each extracted
feature. TF-IDF is a numerical statistic that is intended to
find the importance of a word to a document in the
collection. This technique is concerned with two things.
TF is concerned with the occurrences of each word/feature
and determines how frequently the word appears in each
document. Whereas, IDF is used to determine the weight of
each word in the document. The objective of TF-IDF
feature representation is to weigh down the more frequent
words while scaling up the rare words in the document.

Hence, Tf-idfVectorizer implemented using
Python Scikit-Learn library. It is used to perform both
feature extraction and feature Representation for the task.
There is a parameter that allows us to use the topmost
features concerning the TF-IDF score. To compare the
performance of most discriminative features, the different
values for the max-feature sub-set were tested. However,
the accuracy of classifiers was decreasing as the max-
feature value was increased. For instance, the max-feature
value 2000 and 1500 resulted in an accuracy of 95% and 97%
respectively on SVM-SVC. Thus, can be concluded that the

larger value of the max-feature sub-set was not significantly
contributing to better accuracy so the max-feature value set
to 1500. The following coding snippet represents the
implementation of the feature representation using TF-IDF.

Fig. 7 Feature Extraction and representation - Code Snippet

3.4 Resume Classifier Construction
The discriminative features extracted using the techniques
described in the previous section were used to build the
classifier to accurately classify the Resumes. Several
Machine Learning classifiers were opted to select the best
performing model for deployment and Graphical User
Interface (GUI). The details of Classifier construction
presented in sections below.
3.4.1 Implementation details and experimental setup

After extracting features from the dataset, the data
divided into training and testing. The dataset was divided
into 70% and 30% for train and test set respectively. Nine
different text classifiers were employed as each has its own
philosophy to classify the instances. The “One-Vs-Rest-
Classification” strategy for multiclass classification used
[24]. The brief description of the implemented nine machine
learning models is as follows:
1. K Nearest Neighbors(KNN): KNN is based on

finding k-nearest data points to the new instance and
assign the label according to the highest neighboring
data points. KNN is also known as a lazy learner
classifier because of its simplest method of Euclidian
distance Eq 1 for classification tasks [24].

ඥ∑ ሺ𝑥𝑖 െ 𝑦𝑖ሻଶ௡
௜ୀଵ ሺ1ሻ

2. Multinomial Naïve Bayes (MNB): Naïve Bayes
classifier is based on the conditional probability. NB
classifier finds the probability of a vector belongs to
the class. It finds out the probability for all the given
instances and classifies the with conditional
probability. It is based on strong independence
between the features. MNB is one variant of Naïve
Bayes that multinomial distribution of all pairs [25].

3. Bernoulli Naïve Bayes (BNB): it is also a variant of
Naïve Bayes that accepts the binary features only.
BNB is also effective for classification tasks [26].

4. Gaussian Naïve Bayes (GNB): It is also a variant of
NB that supports continuous-valued features that are
assumed to be distributed according to Gaussian
distribution. GNB only supports vectorized features
representation to implement GNB vectorized features
representation used [27].

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

114

5. Logistic Regression (LR): Logistic Regression
applies the logistic function on the classification task
with a threshold value. LR considered one of the
easiest implementations for classification problems
[28].

6. Linear Support Vector Classifier (SVC): It is based
on finding the best separating line between two classes.
It is the simplest form of Support vector machine that
finds the linear hyperplane between two classes.
Although, it will not give good results if the data is not
linearly separable. Linear SVM is also known as the
least square support vector machine classifier [29].

7. Support Vector Classifier (SVC): SVC overcomes
the above-mentioned issue of Linear SVM by using
the Kernel concept [30] that works well on data that
is not linearly separable.

8. Nu-Support Vector Classifier (NuSVC): It is
similar to the SVC but it also uses a parameter to
control the number of support vectors.

9. Stochastic Gradient Descent (SGD): It uses SGD
for training (that is, looking for the minima of the loss
using SGD).

The extracted features and learned ML models were
stored in Python external pkl file format for future
evaluation and testing. The scikit-learn externals joblib
library used to store extracted features representation and
learned models on disk and later used in GUI for real-time
testing.
3.4.2 Graphical User Interface & system Evaluation in a

real-time environment
To evaluate the trained and learned ML models in real-time
settings on unseen data the Graphical User Interface (GUI)
designed using the Python Tkinter. The extracted features
and learned ML models imported to use in GUI. The
designed and developed GUI allows users to provide a
resume in text format or select a resume text from an unseen
test dataset. The GUI also leverages users to select from
nine ML learned models for classification of resume. This
implementation ensures the transparency and real-time
analysis of Resume Classification on nine learned models.
The designed GUI would be also helpful for implementing
Machine Learning models in a real-time environment and
helpful for recruiters to tackle the tedious task of Resume
Classification in different job categories.

Fig. 8 Graphical User Interface of the proposed system

3.5 Evaluation Matrices
To measure the performance of the mentioned

Classification models, we use different performance
evaluation matrices. As the dataset was imbalanced (shown
in Figures 2 and 3) so the overall accuracy was not only a
significant matrix for model evaluation. Therefore, for
performance evaluation, Overall accuracy, PrecisionM,
RecallM, F-ScoreM matrices were used. The brief
description of performance matrices is as follows.

I. Overall Accuracy: Accuracy is a fraction of predictions
that are correctly identified by the algorithms. However,
Accuracy itself does not tell the full story when we are
working the imbalanced data.

II. Macro Precision (PrecisionM): PrecisionM attempts to
answer that from all the positive predictions, what
fraction of actually positive? The value of precision is
between 0 and 1. Any model that does not produce false-
positive results has a precision of 1. It gives us the idea
that how precisely the model is identifying the True
positive values of classes. In multiclass classification
problem precision for all classes is computed and then the
average of all results is computed. Macro-average
computes the metric independently for each class and
then take the average. The mathematics definition of
PrecisionM is as follows;

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ெ ൌ
∑ ்௉೔

்௉೔ାி௉೔

௖
௜ୀଵ

𝐶

III. Macro Recall (RecallM): RecallM attempts to answer that
from all the actual positive records, what fraction is
correctly identified? The value of precision is between 0
and 1. Any model that does not produce false-negative
results has a precision of 1. In multiclass classification
problem precision for all classes computed then the
average of all results computed. Macro-average computes
the metric independently for each class and then take the
average. The mathematical definition of RecallM is as
follows.

𝑅𝑒𝑐𝑎𝑙𝑙ெ ൌ
∑ ்௉೔

்௉೔ାிே೔

௖
௜ୀଵ

𝐶

IV. Macro F-Score (F-ScoreM): F-ScoreM or F-MeasureM
is defined by the weighted harmonic mean of test’s
precision and recall. The values are between 0 and 1
where highest value ‘1’ shows that algorithm reaches
to best precision and recall values.

4. Results and Discussion

Table 2 presents the PrecisionM, RecallM, F-ScoreM,

and Overall accuracy of all the trained model on test data.
The variation in the performance of trained models can be
significantly observed. The Support Vector Machine class
of learning algorithms perform better than other classifiers.
In all 318 analyses on test data instances, the Linear Support

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

115

Vector Classifier out-perform the other eight classifiers
with nearly 98% overall accuracy and 1.0 PrecisionM which
can be generalized as for the Resume Text Classification
task SVM class classifiers perform best.

Table 2: Performance Evaluation of learned ML Models

C
la

ss
if

ie
r

P
re

ci
si

on
M

R
ec

al
l M

F
-S

co
re

M

O
ve

ra
ll

A

cc
u

ra
cy

%

M
is

cl
as

si
fi

c
at

io
n

%

LSVC 1.00 1.00 1.00 99.6 0.4

SGD 1.00 1.00 1.00 99.6 0.4

LR 1.00 0.99 0.99 99.3 0.7

SVC 1.00 0.99 0.99 99.3 0.7

NuSVC 0.99 0.99 0.99 99.3 0.7

KNN 0.99 0.98 0.99 97.2 2.8

GNB 0.98 0.96 0.96 96.5 3.5

MNB 0.98 0.95 0.96 94.8 5.2

BNB 0.89 0.76 0.79 79.2 20.8

Table 1 summarizes the PrecisionM, RecallM, F-

ScoreM, and overall Accuracy of classifiers on testing data.
The results show that most of the algorithms produced
excellent results on study data this can be comprehended as
the dataset size was optimal and best NLP & ML techniques
were employed to achieve significantly better results. It is
also shown that LSVC, SGD, LR, and SVC produced
exceptionally well results. Thus, the LSVC classifier is the
best performing classifier.

Fig. 9: Overall Accuracy vs Misclassification Report

Figure 9 illustrates the overall accuracy and
misclassification report of the classifiers. It can also be seen
that BNB (Bernoulli Naïve Bayes) didn’t produce better
results as compared to all other classifiers while MNB

(Multinomial Naïve Bayes) performed well on the dataset.
The misclassification of BNB is high as compare to all other
classifiers. One of the reasons for that misclassification is
Bernoulli’s classifier mainly used for Binary classification
and treating all values as the negative class whereas, the
Resume Classification is a multi-class problem. Most of the
models produced better approximately similar results
except the BNB. The overall misclassification report is
relatively low; thus this can be inferred that the extracted
features using TF-IDF were the most discriminative for the
Resume Classification Task. Moreover, the GNB & BNB
model requires a vectorized representation of features and
this could be a reason for slightly poor performance.

Fig. 10 PrecissionM, RecallM, F-ScoreM - Performance Matrices

Figure 10 illustrates the PrecissionM, RecallM, F-
ScoreM of all the models. There is a minor difference in all
three PrecissionM, RecallM, F-ScoreM. Well, this was not the
case with un-processed data was used. The same
performance matrices were measured on raw data and
results were not encouraging. Hence, our designed
Methodology extracted the most discriminative features
from the dataset. That is the reason why most of the
classifiers yielded the best performance.

Fig. 11 Train vs Test Accuracy

Figure 11 illustrates the Train versus Test
Accuracy of used nine classifiers. The overall dataset was
divided into 70% and 30% for training and testing

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

116

respectively. Machine Learning models often suffer with
overfitting and underfitting problems.

The overfitting problem occurs when the learned
ML model performs best on training data and yields better
accuracy however, fails to perform well on the test or
unseen data [31]. The overfitting problem yields higher
train accuracy and lower test accuracy. Whereas, the
underfitting problem occurs when the model fails to
perform well either on test or train data. The underfitting
yields slighter lower accuracies for train and test data.

It is evident from figure 11 that the proposed
models in this study are neither overfitting nor underfitting
the train or test data. The trained models equally performing
better on training and test data. It can be inferred that the
overall process of Natural Language Processing (NLP) and
Machine Learning (ML) techniques employed efficiently to
yield balanced and better performance on test and train data.

5. Limitations and Future work
The major limitation and challenge for the Resume

Classification & Recommendation task is finding an
appropriate and standard dataset to process using the NLP
techniques and train the ML models. Since the resume is not
a standard document and there is no specific industry
standard, thus major efforts were put on processing the
documents in the dataset which were parsed from different
formats and layouts. Moreover, the dataset size was a bit
low to train the ML model for generalized classification.
However, efforts were put to find a more suitable dataset for
the classification task.

The study achieved significant accuracy and
performance gain on Resume Classification in different job
categories. Therefore, in future work, the model will be
extended to match the content of the resume with the
provided job description. The extension in future work will
enable the proposed system suitable for the complete
recruiting process. The proposed system will perform the
most tedious tasks of recruiting process; categorization and
recommendation of suitable resumes for a given job
description.

6. Conclusion
Resume classification is a time-consuming, costly, and

tedious job for an organization. In this regard, this study
proposed an automated approach that uses various machine
learning and NLP techniques for the classification of
Resumes. The proposed methodology used several NLP &
ML techniques for preprocessing data, feature extraction
and representation, model construction, and evaluation for
the Resume Classification task. The study results suggested
that the TF-IDF vectorizer performed best in feature
extraction and representation as the extracted features
yielded excellent results on almost all classifiers. However,
the Support Vector Machine (SVM) class algorithms such

as (Linear, SVC, NuSVC, and SGD) performed
exceptionally good with over 98% and 96% accuracy
respectively on the train and unseen test data. The study
results are quite encouraging to automate the job application
categorization and recommendation based on the content of
Resumes. The developed system can be deployed in real-
time settings for an employer to automate the recruiting
process.

References
1. Koyande, B.A., et al., Predictive Human Resource Candidate

Ranking System.
2. Al-Otaibi, S.T. and M. Ykhlef, A survey of job recommender

systems. International Journal of Physical Sciences, 2012.
7(29): p. 5127-5142.

3. Färber, F., T. Weitzel, and T. Keim, An automated
recommendation approach to selection in personnel
recruitment. AMCIS 2003 proceedings, 2003: p. 302.

4. Breaugh, J.A., The use of biodata for employee selection:
Past research and future directions. Human Resource
Management Review, 2009. 19(3): p. 219-231.

5. Lin, Y., et al., Machine learned resume-job matching solution.
arXiv preprint arXiv:1607.07657, 2016.

6. Yi, X., J. Allan, and W.B. Croft. Matching resumes and jobs
based on relevance models. in Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval. 2007.

7. Sebastiani, F., Machine learning in automated text
categorization. ACM computing surveys (CSUR), 2002.
34(1): p. 1-47.

8. Nigam, K., et al., Text classification from labeled and
unlabeled documents using EM. Machine learning, 2000.
39(2-3): p. 103-134.

9. Uysal, A.K. and S. Gunal, The impact of preprocessing on
text classification. Information Processing & Management,
2014. 50(1): p. 104-112.

10. Otter, D.W., J.R. Medina, and J.K. Kalita, A Survey of the
Usages of Deep Learning for Natural Language Processing.
IEEE Transactions on Neural Networks and Learning
Systems, 2020: p. 1-21.

11. Parkhe, V. and B. Biswas, Sentiment analysis of movie
reviews: finding most important movie aspects using driving
factors. Soft Computing, 2016. 20(9): p. 3373-3379.

12. Bakshi, R.K., et al. Opinion mining and sentiment analysis.
in 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom). 2016. IEEE.

13. Sivapalan, S., et al. Recommender systems in e-commerce. in
2014 World Automation Congress (WAC). 2014. IEEE.

14. Srifi, M., et al., Recommender Systems Based on
Collaborative Filtering Using Review Texts—A Survey.
Information, 2020. 11(6): p. 317.

15. Mujtaba, G., et al., Email classification research trends:
review and open issues. IEEE Access, 2017. 5: p. 9044-9064.

16. Al-garadi, M.A., et al., Using online social networks to track
a pandemic: A systematic review. Journal of biomedical
informatics, 2016. 62: p. 1-11.

17. Mujtaba, G., et al. Automatic text classification of ICD-10
related CoD from complex and free text forensic autopsy
reports. in 2016 15th IEEE International Conference on
Machine Learning and Applications (ICMLA). 2016. IEEE.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

117

18. Gonzalez, T., et al. Adaptive Employee Profile Classification
for Resource Planning Tool. in 2012 Annual SRII Global
Conference. 2012.

19. Guo, S., F. Alamudun, and T. Hammond, RésuMatcher: A
personalized résumé-job matching system. Expert Systems
with Applications, 2016. 60: p. 169-182.

20. Golec, A. and E. Kahya, A fuzzy model for competency-based
employee evaluation and selection. Computers & Industrial
Engineering, 2007. 52(1): p. 143-161.

21. Gopalakrishna, S.T. and V. Vijayaraghavan, Automated Tool
for Resume Classification Using Sementic Analysis.
International Journal of Artificial Intelligence and
Applications (IJAIA), 2019. 10(1).

22. Sayfullina, L., et al. Domain adaptation for resume
classification using convolutional neural networks. in
International Conference on Analysis of Images, Social
Networks and Texts. 2017. Springer.

23. Ramos, J. Using tf-idf to determine word relevance in
document queries. in Proceedings of the first instructional
conference on machine learning. 2003. New Jersey, USA.

24. Xu, J., An extended one-versus-rest support vector machine
for multi-label classification. Neurocomputing, 2011. 74(17):
p. 3114-3124.

25. Loper, E. and S. Bird, NLTK: the natural language toolkit.
arXiv preprint cs/0205028, 2002.

26. Kibriya, A.M., et al. Multinomial naive bayes for text
categorization revisited. in Australasian Joint Conference on
Artificial Intelligence. 2004. Springer.

27. McCallum, A. and K. Nigam. A comparison of event models
for naive bayes text classification. in AAAI-98 workshop on
learning for text categorization. 1998. Citeseer.

28. Raschka, S., Naive bayes and text classification i-
introduction and theory. arXiv preprint arXiv:1410.5329,
2014.

29. Xu, S., Bayesian Naïve Bayes classifiers to text classification.
Journal of Information Science, 2018. 44(1): p. 48-59.

30. Schölkopf, B., A.J. Smola, and F. Bach, Learning with
kernels: support vector machines, regularization,
optimization, and beyond. 2002: MIT press.

31. Suykens, J.A. and J. Vandewalle, Least squares support
vector machine classifiers. Neural processing letters, 1999.
9(3): p. 293-300.

Irfan Ali is currently pursuing Master’s
Degree in Computer Science at the
Department of Computer Science, Sukkur
IBA University, Pakistan. He is also working
as the Assistant Director Research at Office of
Research, Innovation & Commercialization –
ORIC at the Benazir Bhutto Shaheed
University of Technology and Skill
Development – BBUSTSD, Khairpur Mir’s,

Pakistan. Prior to this, He remained associated with Sukkur IBA
University for more than five years and worked as Research
Associate in various departments during this period he worked on
several research projects, organized international research
conferences and seminars. Ali received his Bachelor’s Degree in
Computer Science from Sukkur IBA University. His research
areas of interest are Artificial Intelligence, Machine & Deep
Learning, Data Science, Big Data Analytics, Text Mining, Text
Classification, Image Classification, and IoT.

Nimra is MS Research Scholar at the Department
of Computer Science, Sukkur IBA University,
Pakistan. She is also working as a Subject
Specialist, Computer Science at IBA Public
School, Sukkur, Pakistan. She received her
Bachelor’s degree in Computer Science from
Sukkur IBA University, Pakistan in 2018. Her

research interests include Machine Learning, Natural Language
Processing, Text mining, text classification, and Cloud Computing.

Ghulam Mujtaba is currently working as an
Associate Professor at the Department of
Computer Science, Sukkur IBA University.
He is also working as the Director of the
Center of Excellence for Robotics, Artificial
Intelligence, and Blockchain (CRAIB). He
has been associated with Sukkur IBA
University since 2006. He received his

Doctorate in the field of Computer Science from the University of
Malaya, Kuala Lumpur, Malaysia in 2018. His field of research
includes artificial intelligence, machine learning, online social
networking, text mining, text classification, image classification,
and deep learning. Dr. Mujtaba teaches various courses such as
Computer Programming, Object-Oriented Programming, Data
Science, Machine Learning, Natural Language Processing, Deep
Learning, and Advanced Research Methods. He has authored or
co-authored several articles in academic journals indexed in well-
reputed databases.

Zahid Hussain Khand is currently
working as Registrar, Sukkur IBA
University. He has been associated with
Sukkur IBA University since 2003. His
field of research includes Information
and Communication Technology, Agri-
tech, and Smart-tech. Mr. Khand teaches
various courses such as Network
Security, Computer Networks, Data

Communication, Internet of Things, and Research Methods. He
has authored or co-authored several articles in academic journals
indexed in well-reputed databases.

Zafar Ali is currently working as an
ERP Manager at Sukkur IBA University.
He has been associated with Sukkur IBA
University since 2008. His field of
research includes Information and
Communication Technology, ERP,
Visual Programming, Databases,
Information Retrieval, and Distributed

Databases.

Sajid Khan is currently working as an
Assistant Professor at the Department of
Computer Science, Sukkur IBA
University He received the B.S. degree in
telecom engineering from FAST-NUCES
University, Pakistan, in 2011, and the
M.S. leading to Ph.D. degrees in
electronics and communication

engineering from Hanyang University, Ansan, South Korea.

