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Abstract 
The selection and recommendation of a suitable job applicant from 
the pool of thousands of applications are often daunting jobs for 
an employer. The recommendation and selection process 
significantly increases the workload of the concerned department 
of an employer. Thus, Resume Classification System using the 
Natural Language Processing (NLP) and Machine Learning (ML) 
techniques could automate this tedious process and ease the job of 
an employer. Moreover, the automation of this process can 
significantly expedite and transparent the applicants’ selection 
process with mere human involvement. Nevertheless, various 
Machine Learning approaches have been proposed to develop 
Resume Classification Systems. However, this study presents an 
automated NLP and ML-based system that classifies the Resumes 
according to job categories with performance guarantees. This 
study employs various ML algorithms and NLP techniques to 
measure the accuracy of Resume Classification Systems and 
proposes a solution with better accuracy and reliability in different 
settings. To demonstrate the significance of NLP & ML techniques 
for processing & classification of Resumes, the extracted features 
were tested on nine machine learning models Support Vector 
Machine - SVM (Linear, SGD, SVC & NuSVC), Naïve Bayes 
(Bernoulli, Multinomial & Gaussian), K-Nearest Neighbor (KNN) 
and Logistic Regression (LR). The Term-Frequency Inverse 
Document (TF-IDF) feature representation scheme proven 
suitable for Resume Classification Task. The developed models 
were evaluated using F-ScoreM, RecallM, PrecissionM, and overall 
Accuracy. The experimental results indicate that using the One-
Vs-Rest-Classification strategy for this multi-class Resume 
Classification task, the SVM class of Machine Learning 
algorithms performed better on the study dataset with over 96% 
overall accuracy. The promising results suggest that NLP & ML 
techniques employed in this study could be used for the Resume 
Classification task.  
Keywords:  
Resume Classification, Natural Language Processing, Machine 
Learning, Text Classification, Recommender System  
 

1. Introduction 
 

Internet-based recruiting systems have been rapidly 
adopted by recruiters in recent years. The rapid growth of 
the internet caused an identical growth in quantity of 
obtainable online information [1]. As a result, information 
is widely available. Contrary to this, information became 
overloaded and resulted in the need for information 

management [2, 3]. Moreover, the ever-increasing 
unemployment rate in developing countries like Pakistan 
results in considerable amount of job applications for a 
vacant position[4]. Thus, the selection of suitable job 
applicants from the pool of thousands applications is often 
a daunting job for an employer. Recruiters need to screen 
through a large amount of data to select the most suitable 
application from the pool. Thus, it significantly increases 
the workload of the concerned department of Recruiter [5]. 
Moreover, this process involves the engagement of 
considerable Human Resources and requires rigorous 
efforts and resources to finalize the most suitable applicant 
for further recruiting process. If the recruiters can figure out 
the non-relevant profiles at the earlier stages of the hiring 
process, this can significantly save time and money [6].   

The Resume is a portfolio document developed by job 
applicants to present the relevant details for the vacant job. 
In this document, the applicant provides personal details, 
Educational details, accomplishments, competencies, skills, 
and experiences. This resume helps recruiters to shortlist the 
applicant from the pool of applications as it provides the 
complete picture of the applicant’s competencies and skills. 
The resume screening demands domain knowledge to 
understand the suitability and relevance of an applicant for 
the advertised job vacancy. However, the current global 
economic condition that companies face of getting less 
capital to speculate within their HR department, while 
desperate to ensure that they are choosing the highly 
competitive applicant fitted to the job description [1]. Thus, 
recruiters are facing three main challenges: 

 
 Making sense of Resume: This is a fact that Resumes 

in the market have no defined standard. Every resume 
may have a different structure in the pool of 
applications. Thus, HR needs to manually go through 
each resume to find out the best resume. 

 Mapping resume to the job description: This is based 
on mapping the applicant’s Resume to the requirements 
criteria provided by the recruiter. This process involves 
detailed screening and requires domain experts to 
efficiently perform this task. 
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 Managing the cost: For, Screening and selection, 
Recruiters need to adopt automated processes with 
mere human involvement to save time and money. 

Hence, Machine Learning based automated Resume 
Classification Systems can be used to classify the Resumes 
according to the job category. This approach can automate 
the tedious process of Resume Selection and support 
recruiters to overcome the above-mentioned challenges. 
Moreover, the automation of this process can significantly 
expedite the applicants’ shortlisting process and also 
transparent the selection process with mere human 
involvement. 

Text classification (TC) is a technique to 
automatically classify the predefined classes relevant to a 
particular text document [7, 8]. TC is one of the most 
fundamental tasks of Natural Language Processing (NLP). 
TC is carried out with the involvement of Supervised 
Machine Learning techniques. These techniques require 
text representation as a fixed-length feature vector [7]. Thus, 
Preprocessing and Feature Engineering are the most 
important and fundamental steps for such text classification 
tasks where we apply various feature extraction and feature 
representation techniques [9]. 

Feature extraction typically finds the set of most 
informative features whereas feature representation figures 
out the most suitable way to represent the values of 
extracted features. The most widely used feature extraction 
techniques for text documents are N-grams, Bag of Words 
(BoW), and Word-to-Vec. Every extracted feature assigned 
the numeric value using different representation techniques 
such as Binary and TF-IDF. Every feature engineering task 
has some pros and cons. Hence, the job of a Machine 
Learning Engineer is to find the most useful technique for 
the problem under consideration. Nevertheless, various 
Machine Learning approaches have been proposed to 
develop Resume Classification Systems in literature. 
However, this study aims at developing an ML-based 
system that classifies the Resumes according to job 
categories. The study applies the Supervised Machine 
Learning approach for resume classification to correctly 
classify 25 different job categories resumes belong to. The 
dataset has 962 labeled resumes’ categories to train the 
classifier. Thus, various multi-class classification 
algorithms and NLP techniques are employed to measure 
the accuracy of Resume Classification using performance 
metrics such as overall accuracy, F-ScoreM, PrecisionM, and, 
RecallM. This study proposes an ML-based Resume 
Classifier with better accuracy and performance guarantees. 

The resume is an official and formal document 
used mainly for demonstrating the brief profile of a job 
applicant. The resume contains information related 
education, skills, experience, achievements, and portfolio of 
a job applicant. The resume often used as an effective tool 
to assess the overall suitability of an aspirant for the desired 

job. Moreover, in response to job postings applicants submit 
Resume as a formal document for job application 
consideration. The employer receives hundreds of Resumes 
for mere vacancies and finds it difficult to categorize and 
classify to a suitable job vacancy. Thus, this study attempts 
at developing an efficient and accurate Resume 
Classification System to ease the job of employers. 

The rest of the paper is organized as follows. 
Section 2 presents the Review of related studies, Section3 
describes the proposed Methodology to accomplish the 
objectives, Section 4 presents and discusses the findings of 
the study, and Section 5 presents the major limitations of 
the study and proposed future work and finally, section 6 
concludes the study.  

2. Related Work 
 

In recent years, Machine Learning (ML) based text 
classification(TC) techniques have been widely employed 
in various domains [10] such as Sentiment analysis [11, 12], 
E-Commerce portals [13, 14], Email classification [15], 
Human Resource Management [2] and bioinformatics [16, 
17]. In this study, ML-based text classification techniques 
are employed in the Human Resource Management domain. 
Various NLP and ML classification techniques have been 
employed to predict the category of Resume. 

Several studies have proposed the Machine Learning 
based system for Human Resource Management and 
recruiting processes. For instance, the study [18]  designed 
the approach for Resume ranking that uses that layered 
information retrieval framework to parse the resumes. The 
goal of this study was to help recruiters to find out the 
relevant job applicant for a job opening. Another study [19] 
designed the personalized approach for Resume-job 
matching that offers the statistical similarity for resume 
ranking according to the available jobs. This study could 
have been more generalized to recruiters as well as for job 
seekers. Employers can make use of this system to find the 
relevant resumes whereas job seekers can use to search the 
most relevant job matches their resumes. The fuzzy-based 
model used in  [20] to evaluate the relevancy of a resume as 
compared to the job description. All the above-mentioned 
studies are working for document similarity by comparing 
the resume to the job description. However, few studies 
employed Supervised Text Classification Techniques to 
predict the category of Resume.  

Perhaps, the most related work to the proposed 
approach is of [21]. In this wok, NLP and ML techniques 
were employed to predict the domain of resumes. This study 
aimed to allocate the relevant project to recruits. The study 
proposed the Named Entity Recognition (NER) approach 
coupled with various classification models such as Logistic 
Regression, K-Nearest Neighbors for the classification. 
Besides this, the study proposed an ensemble learning-
based voting classifier that was retrained after a fixed 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024 

 

 

110 

interval. Hence, the number of votes for each classifier was 
modified. The experimental results revealed that a voting 
based classifier produced 91.2% accuracy in predicting the 
categories while the accuracy was 84.2% without retraining. 
Another related study is of [22], in which the Convolutional 
Neural Network (CNN) was used to classify Resumes into 
27 different job categories. In this study, CNN classifier was 
trained on word2Vec pre-trained representations to 
determine the category of Resume. This approach achieved 
40.15% accuracy on resume classification and 74.88% 
accuracy on the job classification task. However, the study 
only used job summary text for classification and 
considered only one base method of fast Text for 
comparison of the performance. 

Hence, both the aforementioned studies had some 
major limitations. The aforementioned studies had 
employed various classification techniques whereas failed 
to evaluate various preprocessing techniques for the 
proposed classifiers which may lead to low accuracy of the 
classifier. Further, only overall accuracy as a measure used 
for evaluation and failed to use various evaluation metrics 
such as F-Score, Precision, and Recall to evaluate the 
learning efficiency of classifiers. 

It is evident from the above-mentioned studies that 
approaches used mainly suffered with two problems lower 
accuracy and performance comparison. Besides this, very 
few ML models were employed for the Resume 
Classification task and accuracy as the only measure used 
for performance. Moreover, the features extraction and 
representation techniques were not explored to overcome 
the less accuracy problem. To overcome the limitations of 
previously proposed studies, this study will use different 
NLP and Machine Learning techniques to improve the 
efficiency of classifiers and various performance matrices 
will be used for model evaluation. Also, various feature 
extraction and representation techniques would be 
employed for discriminative features contributing to better 
classification. Further, this study will provide 
discriminative features to several machine learning models, 
and various performance matrices such as PrecisionM, 
RecallM, and F-ScoreM will be used for performance 
measuring. 

3. Methodology 
 

This section discusses the proposed Methodology for 
building an efficient and accurate Resume Classification 
System in detail. To achieve the objective of Resume 
Classification, Natural Language Processing (NLP) and 
Machine Learning (ML) techniques employed using the 
best practices. The overall methodology designed approach 
devised in five stages as illustrated in figure 1: i) Data 
Collection and visualization ii) Preprocessing iii) Feature 
Engineering iv) Model Construction and v) Model 

Evaluation and testing in a real-time environment using 
Graphical User Interface (GUI).  

 
Fig. 1 The proposed methodology for resume classification 

3.1 Data Collection and Visualization 
The Resumes with Job Categories dataset was 

collected from an online data repository. The dataset is in 
Comma Separated Values (CSV) file format and has three 
columns namely ID, Category, and Resume’s Text. The ID, 
Category and Resume Columns represent Index, Job 
Category/Field, and content of Resume respectively. The 
dataset contains 962 parsed and labeled resumes in 25 
different job categories. The number of Resume instances 
for each class job category illustrated in figure 2 and 
category-wise distribution (percentage) of resume instances 
plotted in figure 3 using Python Matplotlib library. The 
visual evidence in Figure 2 shows that each job category has 
a different number of resume instances and this can lead to 
an imbalanced data problem. Moreover, the data for two 
categories namely Java Developer and Testing has the 
highest resumes instances and can be considered as biased 
class categories. Whereas, the resume instances for some 
categories such as Advocate, Civil Engineer, and SAP 
Developer are relatively less than some other categories for 
instance Java Developer. However, the category-wise total 
distribution in Figure 3 illustrates the overall representation 
of resume instances within the percentage range of (2.1 to 
8.7%) in the dataset.     
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Fig. 2 Resume instances for each job category 

 
Fig. 3 Category-wise total distribution of Resume instances 

3.2 Data Preprocessing 
The Data preprocessing involves steps to 

transform raw data into meaningful information for the 
Machine Learning task. In the case of textual data for text 
classification, these steps involve cleaning raw text data, 
removing the unnecessary or meaning-less data, removing 
the repetitive (redundant) data, removing the missing (null) 
values, and transforming data to a common scale. To 
preprocess the resume’s textual data for the Resume 
Classification task following key steps were performed. 

3.2.1 Data Cleansing  
The dataset contains the parsed resumes from different 

formats such as PDF, DOC, DOCX in a CSV format has a 
lot of unnecessary and unprocessed data in the resume 
column. Thus, the major efforts were required to preprocess 
the data and make it ready for Text Classification. In the 
data preprocessing step, the less informative text was 
cleaned using the Natural Language Processing Took Kit - 
NLTK [21] for stop words removal and Python 3.7.3 
Regular Expressions. The following key tasks were 
performed for data preprocessing using the customized 
written program function in python as illustrated in Table 1. 

I. The textual content of resumes was converted to 
lowercase 

II. The special characters, punctuations, brackets, URLs, 
Email addresses, mentions, hash tags, apostrophes, 
leading & trailing characters, extra white spaces, and 
Non-ASCII characters were removed from the 
Resume’s text 

III. The masking was applied special escape sequences 
such as \n, \t, \a, \b, and so on 

IV. The numbers were masked 
V. The string fragmentations were masked 

VI. The word phrases in short form such as I’ll to I will 
were converted to their full forms 

VII. Similar attributions were performed on 
unclean/unprocessed on raw resume’s text data 

Table 1 Method or Dataset cleaning 
CleanResume (resumeText): 

1. resumeText = re.sub('http\S+\s*', ' ', resumeText)  # To remove 
URLs (Http, Https) 

2. resumeText = re.sub('RT|cc', ' ', resumeText)  # To remove RT 
and cc  

3. resumeText = re.sub('#\S+', '', resumeText)  # To remove 
possible hashtags 

4. resumeText = re.sub('@\S+', '  ', resumeText)  # To remove 
possible mentions and email addresses 

5. resumeText = re.sub('[%s]' % 
re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|]~"""), ' ', 
resumeText)  # To   remove punctuations, brackets and special 
characters 

6. resumeText = re.sub(r'[^\x00-\x7f]',r' ', resumeText) # To 
replace Non-ASCII Characters with single space 

7. resumeText = re.sub('\s+', ' ', resumeText)  # To remove extra 
whitespaces 

8. resumeText = resumeText.lower() #To convert text to lowercase 
9. resumeText = re.sub(r"what's", "what is ", resumeText) # To 

chanage what's to what is  
10. resumeText = re.sub(r"\'s", " ", resumeText) # To remove 

apposophy s 
11. resumeText = re.sub(r"\'ve", " have ", resumeText) # To change 

've to have 
12. resumeText = re.sub(r"can't", "can not ", resumeText) # To 

change can't to can not 
13. resumeText = re.sub(r"n't", " not ", resumeText) # To change n't 

to not 
14. resumeText = re.sub(r"i'm", "i am ", resumeText) # To change 

i'm to i am 
15. resumeText = re.sub(r"\'re", " are ", resumeText) # To change 're 

to are  
16. resumeText = re.sub(r"\'d", " would ", resumeText) # To change 

'd to would 
17. resumeText = re.sub(r"\'ll", " will ", resumeText) # To change 'll 

to will 
18. resumeText = re.sub(r"\'scuse", " excuse ", resumeText) # To 

change 'scuse to excuse 
19. resumeText = re.sub('\W', ' ', resumeText) # To replace 

whitespaces  
20. resumeText = resumeText.strip(' ') # To strip text (removing 

leading and trailing characters) 
21 return resumeText

3.2.2  Removal the stop words  
Stop words removal is one of the most essential steps 

in data preprocessing. Stop words such as 'is', ‘each’, 'and' 
and so on appear most often in any textual data. However, 
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these most frequently occurring words in a text document 
are not the informative features (tokens) for any classifier. 
Thus, these stop words should be removed from the corpus 
for the classification model. The stop words from the 
resume’s text column were removed by performing the 
following steps using the python programming: 

I. The word tokenization was performed on the 
resume’s text using NLTK library and token were 
stored in an array  

II. The standard English language stop words were 
imported using NLTK corpus and compared with 
each element in the tokenized array  

III. If any element of the tokenized array was found in 
the list of NLTK stop words, that particular 
element (tokenized word) was removed 

IV. Repeated this process for all the tokens  
V. The final tokenized elements array did not contain 

any stop word 
To visualize the stop words removal process, the word 

cloud of most frequently occurring words in the corpus of 
resumes was generated using the python word cloud feature 
as illustrated in figure 4. It can be observed that the word 
cloud now contains more informative words other than 
frequently occurring stop words and these words would be 
more meaningful for classifiers to learn.  

 
Fig. 4 Word Cloud of most frequent words in the cleaned dataset 

3.2.3 Stemming & Lemmatization 
Stemming & Lemmatization are known as Text 

Normalization or sometimes Word Normalization 
techniques in Natural Language Processing (NLP). The 
purpose of these techniques is to decrease word inflection 
in the corpus of classification text by mapping the group of 
words to the same root stem. Specifically, stemming and 
lemmatization remove the prefixes and suffixes (affixes) 
such as (-es, -s, -ed, in-, un-, -ing, etc) from words which 
result in inflectional (changing/deriving meaning of words). 
For instance, the stem (root) word for Plays, Playing, and 
Played is Play so the stemming and lemmatization 
techniques would map these words in the corpus of 
classification text to root (stem) word.  
 

൭
𝑊𝑜𝑟𝑘𝑠
𝑊𝑜𝑟𝑘𝑖𝑛𝑔
𝑊𝑜𝑟𝑘𝑒𝑑

൱ → ൬
𝑊𝑜𝑟𝑘

ሺ𝑟𝑜𝑜𝑡 𝑠𝑡𝑒𝑚 𝑤𝑜𝑟𝑑ሻ
൰ 

൭
𝑎𝑚
𝑎𝑟𝑒
𝑖𝑠
൱ → ൬

𝑏𝑒
ሺ𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑓𝑜𝑟𝑚𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑟𝑏 െ 𝑡𝑜 𝑏𝑒ሻ

൰ 

൭
𝐶𝑎𝑟𝑠
𝐶𝑎𝑟ᇱ𝑠
𝐶𝑎𝑟𝑠′

൱ → ൬
𝑏𝑒

ሺ𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑎𝑛𝑑 𝑠𝑖𝑚𝑝𝑙𝑒 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑛𝑜𝑢𝑛ሻ
൰ 

Using the above mappings, a sentence could be normalized 
using the stemming and lemmatization techniques as follow; 

ሺ𝑇ℎ𝑒 𝑏𝑜𝑦ᇱ𝑠 𝑐𝑎𝑟𝑠 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑜𝑙𝑜𝑟𝑠 ሻ
→ ሺ𝑇ℎ𝑒 𝑏𝑜𝑦 𝑐𝑎𝑟 𝑏𝑒 𝑑𝑖𝑓𝑓𝑒𝑟 𝑐𝑜𝑙𝑜𝑟ሻ 

The Natural Language Tool Kit (NLTK) library in 
python offers the implementation of stemming and 
lemmatization techniques in Python with different settings. 
However, unlike stemming offered by the NLTK library in 
Python, the lemmatization reduces the inflected words 
properly by ensuring the root word belongs to the language. 
Thus, we implemented lemmatization on our Resume’s text 
corpus as the Resumes are more formal documents. The 
code implementation of lemmatization implementation 
presented in below code snippet; 

 
Fig. 5 Lemmatization - Code Snippet 

3.2.4 Label Encoding  
The label encoding technique handles the 

categorical values of variables in the Machine Learning 
Model. The label encoding technique assigns a unique 
integer value to a categorical variable. To make raw text 
data ready for the machine learning model the label 
encoding was done to assign a numerical label to all 
categories shown in figure 2. The Scikit-learn Label 
Encoder used for the mentioned purpose. Hence, the label 
encoder on the Category field of the data was applied. 
Figure 6 shows the code snippet for Label encoding. 

 
Fig. 6 Label Encoding - Code Snippet 

3.3 Feature Engineering 
The feature engineering helps to extract, formulate, and 
represent the set of most discriminative (informative) 
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features from the corpus of text for the classification task. 
After data cleaning and preprocessing, the resume’s text 
data has an informative set of words. However, figure 4 
shows the list of most frequent words in our dataset. It 
shows dataset does not contain stop words and other less 
informative words now. Therefore, we use different 
methods for feature extraction however, The Term 
Frequency – Inverse Document Frequency (TF-IDF) 
features representation works best in our dataset.  Thus, the 
TF-IDF technique used for representing the value of each 
extracted feature. 

3.3.1 Feature Extraction & Master Feature Creation 
After applying the preprocessing step on the data, the 

dataset contains the words that are important features for the 
classification. To demonstrate the significance, different 
ways for feature extraction namely, BoW, Word Vectorizer, 
N-Gram were used and tested. However, our model showed 
the best results on Word vectorizer implementation using 
the TF-IDF feature representation. Steps for feature 
extraction are as follows: 
I. Design Vocabulary: Here, we made the list of all words 

presented in the Resume field of all records.  
II. Document Vector: In this step, we represent each word 

as a feature and make a separate field for each word of 
vocabulary. The objective of this step is to map each 
Resume free text into the vector.  

3.3.2 Feature Representation 
This step aims to allocate an arithmetic value to each of 

the extracted features in the vector. The different methods 
for representing the features like BOW, CountVectorizer, 
and N-gram were employed however our model yielded the 
best accuracy on the TF-IDF vectorizer.  Therefore, TF-IDF 
[23] used for representing the value of each extracted 
feature. TF-IDF is a numerical statistic that is intended to 
find the importance of a word to a document in the 
collection. This technique is concerned with two things. 
TF is concerned with the occurrences of each word/feature 
and determines how frequently the word appears in each 
document. Whereas, IDF is used to determine the weight of 
each word in the document. The objective of TF-IDF 
feature representation is to weigh down the more frequent 
words while scaling up the rare words in the document.  

Hence, Tf-idfVectorizer implemented using 
Python Scikit-Learn library. It is used to perform both 
feature extraction and feature Representation for the task. 
There is a parameter that allows us to use the topmost 
features concerning the TF-IDF score. To compare the 
performance of most discriminative features, the different 
values for the max-feature sub-set were tested. However, 
the accuracy of classifiers was decreasing as the max-
feature value was increased. For instance, the max-feature 
value 2000 and 1500 resulted in an accuracy of 95% and 97% 
respectively on SVM-SVC. Thus, can be concluded that the 

larger value of the max-feature sub-set was not significantly 
contributing to better accuracy so the max-feature value set 
to 1500. The following coding snippet represents the 
implementation of the feature representation using TF-IDF. 

 
Fig. 7 Feature Extraction and representation - Code Snippet 

3.4 Resume Classifier Construction 
The discriminative features extracted using the techniques 
described in the previous section were used to build the 
classifier to accurately classify the Resumes. Several 
Machine Learning classifiers were opted to select the best 
performing model for deployment and Graphical User 
Interface (GUI). The details of Classifier construction 
presented in sections below.  
3.4.1 Implementation details and experimental setup  

After extracting features from the dataset, the data 
divided into training and testing. The dataset was divided 
into 70% and 30% for train and test set respectively. Nine 
different text classifiers were employed as each has its own 
philosophy to classify the instances. The “One-Vs-Rest-
Classification” strategy for multiclass classification used 
[24]. The brief description of the implemented nine machine 
learning models is as follows:  
1. K Nearest Neighbors(KNN): KNN is based on 

finding k-nearest data points to the new instance and 
assign the label according to the highest neighboring 
data points. KNN is also known as a lazy learner 
classifier because of its simplest method of Euclidian 
distance Eq 1 for classification tasks [24]. 

ඥ∑ ሺ𝑥𝑖 െ 𝑦𝑖ሻଶ௡
௜ୀଵ                     ሺ1ሻ  

2. Multinomial Naïve Bayes (MNB): Naïve Bayes 
classifier is based on the conditional probability. NB 
classifier finds the probability of a vector belongs to 
the class. It finds out the probability for all the given 
instances and classifies the with conditional 
probability. It is based on strong independence 
between the features. MNB is one variant of Naïve 
Bayes that multinomial distribution of all pairs [25].  

3. Bernoulli Naïve Bayes (BNB): it is also a variant of 
Naïve Bayes that accepts the binary features only. 
BNB is also effective for classification tasks [26].  

4. Gaussian Naïve Bayes (GNB): It is also a variant of 
NB that supports continuous-valued features that are 
assumed to be distributed according to Gaussian 
distribution. GNB only supports vectorized features 
representation to implement GNB vectorized features 
representation used [27]. 
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5. Logistic Regression (LR): Logistic Regression 
applies the logistic function on the classification task 
with a threshold value. LR considered one of the 
easiest implementations for classification problems 
[28]. 

6. Linear Support Vector Classifier (SVC): It is based 
on finding the best separating line between two classes. 
It is the simplest form of Support vector machine that 
finds the linear hyperplane between two classes. 
Although, it will not give good results if the data is not 
linearly separable. Linear SVM is also known as the 
least square support vector machine classifier [29].   

7. Support Vector Classifier (SVC): SVC overcomes 
the above-mentioned issue of Linear SVM by using 
the Kernel concept [30]  that works well on data that 
is not linearly separable.  

8. Nu-Support Vector Classifier (NuSVC): It is 
similar to the SVC but it also uses a parameter to 
control the number of support vectors. 

9. Stochastic Gradient Descent (SGD): It uses SGD 
for training (that is, looking for the minima of the loss 
using SGD).  

The extracted features and learned ML models were 
stored in Python external pkl file format for future 
evaluation and testing. The scikit-learn externals joblib 
library used to store extracted features representation and 
learned models on disk and later used in GUI for real-time 
testing.  
3.4.2 Graphical User Interface & system Evaluation in a 

real-time environment 
To evaluate the trained and learned ML models in real-time 
settings on unseen data the Graphical User Interface (GUI) 
designed using the Python Tkinter. The extracted features 
and learned ML models imported to use in GUI. The 
designed and developed GUI allows users to provide a 
resume in text format or select a resume text from an unseen 
test dataset. The GUI also leverages users to select from 
nine ML learned models for classification of resume. This 
implementation ensures the transparency and real-time 
analysis of Resume Classification on nine learned models. 
The designed GUI would be also helpful for implementing 
Machine Learning models in a real-time environment and 
helpful for recruiters to tackle the tedious task of Resume 
Classification in different job categories. 

 
Fig. 8 Graphical User Interface of the proposed system 

3.5 Evaluation Matrices 
To measure the performance of the mentioned 

Classification models, we use different performance 
evaluation matrices. As the dataset was imbalanced (shown 
in Figures 2 and 3) so the overall accuracy was not only a 
significant matrix for model evaluation. Therefore, for 
performance evaluation, Overall accuracy, PrecisionM, 
RecallM, F-ScoreM matrices were used. The brief 
description of performance matrices is as follows. 

I. Overall Accuracy: Accuracy is a fraction of predictions 
that are correctly identified by the algorithms. However, 
Accuracy itself does not tell the full story when we are 
working the imbalanced data. 

II. Macro Precision (PrecisionM): PrecisionM attempts to 
answer that from all the positive predictions, what 
fraction of actually positive? The value of precision is 
between 0 and 1. Any model that does not produce false-
positive results has a precision of 1. It gives us the idea 
that how precisely the model is identifying the True 
positive values of classes. In multiclass classification 
problem precision for all classes is computed and then the 
average of all results is computed. Macro-average 
computes the metric independently for each class and 
then take the average. The mathematics definition of 
PrecisionM is as follows; 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ெ ൌ  
∑ ்௉೔

்௉೔ାி௉೔

௖
௜ୀଵ

𝐶
 

III. Macro Recall (RecallM): RecallM attempts to answer that 
from all the actual positive records, what fraction is 
correctly identified? The value of precision is between 0 
and 1. Any model that does not produce false-negative 
results has a precision of 1. In multiclass classification 
problem precision for all classes computed then the 
average of all results computed. Macro-average computes 
the metric independently for each class and then take the 
average. The mathematical definition of RecallM is as 
follows. 

𝑅𝑒𝑐𝑎𝑙𝑙ெ ൌ  
∑ ்௉೔

்௉೔ାிே೔

௖
௜ୀଵ

𝐶
 

IV. Macro F-Score (F-ScoreM): F-ScoreM or F-MeasureM 
is defined by the weighted harmonic mean of test’s 
precision and recall. The values are between 0 and 1 
where highest value ‘1’ shows that algorithm reaches 
to best precision and recall values.  

4. Results and Discussion 
 

Table 2 presents the PrecisionM, RecallM, F-ScoreM, 

and Overall accuracy of all the trained model on test data. 
The variation in the performance of trained models can be 
significantly observed. The Support Vector Machine class 
of learning algorithms perform better than other classifiers. 
In all 318 analyses on test data instances, the Linear Support 
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Vector Classifier out-perform the other eight classifiers 
with nearly 98% overall accuracy and 1.0 PrecisionM which 
can be generalized as for the Resume Text Classification 
task SVM class classifiers perform best.  
 

Table 2: Performance Evaluation of learned ML Models 
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LSVC 1.00 1.00 1.00 99.6 0.4 

SGD 1.00 1.00 1.00 99.6 0.4 

LR 1.00 0.99 0.99 99.3 0.7 

SVC 1.00 0.99 0.99 99.3 0.7 

NuSVC 0.99 0.99 0.99 99.3 0.7 

KNN 0.99 0.98 0.99 97.2 2.8 

GNB 0.98 0.96 0.96 96.5 3.5 

MNB 0.98 0.95 0.96 94.8 5.2 

BNB 0.89 0.76 0.79 79.2 20.8 

 
Table 1 summarizes the PrecisionM, RecallM, F-

ScoreM, and overall Accuracy of classifiers on testing data. 
The results show that most of the algorithms produced 
excellent results on study data this can be comprehended as 
the dataset size was optimal and best NLP & ML techniques 
were employed to achieve significantly better results. It is 
also shown that LSVC, SGD, LR, and SVC produced 
exceptionally well results. Thus, the LSVC classifier is the 
best performing classifier.  

 
Fig. 9: Overall Accuracy vs Misclassification Report 

Figure 9 illustrates the overall accuracy and 
misclassification report of the classifiers. It can also be seen 
that BNB (Bernoulli Naïve Bayes) didn’t produce better 
results as compared to all other classifiers while MNB 

(Multinomial Naïve Bayes) performed well on the dataset. 
The misclassification of BNB is high as compare to all other 
classifiers. One of the reasons for that misclassification is 
Bernoulli’s classifier mainly used for Binary classification 
and treating all values as the negative class whereas, the 
Resume Classification is a multi-class problem. Most of the 
models produced better approximately similar results 
except the BNB. The overall misclassification report is 
relatively low; thus this can be inferred that the extracted 
features using TF-IDF were the most discriminative for the 
Resume Classification Task. Moreover, the GNB & BNB 
model requires a vectorized representation of features and 
this could be a reason for slightly poor performance. 

 
Fig. 10 PrecissionM, RecallM, F-ScoreM - Performance Matrices 

Figure 10 illustrates the PrecissionM, RecallM, F-
ScoreM of all the models. There is a minor difference in all 
three PrecissionM, RecallM, F-ScoreM. Well, this was not the 
case with un-processed data was used. The same 
performance matrices were measured on raw data and 
results were not encouraging. Hence, our designed 
Methodology extracted the most discriminative features 
from the dataset. That is the reason why most of the 
classifiers yielded the best performance. 

 
Fig. 11 Train vs Test Accuracy 

Figure 11 illustrates the Train versus Test 
Accuracy of used nine classifiers. The overall dataset was 
divided into 70% and 30% for training and testing 
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respectively. Machine Learning models often suffer with 
overfitting and underfitting problems.  

The overfitting problem occurs when the learned 
ML model performs best on training data and yields better 
accuracy however, fails to perform well on the test or 
unseen data [31]. The overfitting problem yields higher 
train accuracy and lower test accuracy. Whereas, the 
underfitting problem occurs when the model fails to 
perform well either on test or train data. The underfitting 
yields slighter lower accuracies for train and test data. 

It is evident from figure 11 that the proposed 
models in this study are neither overfitting nor underfitting 
the train or test data. The trained models equally performing 
better on training and test data. It can be inferred that the 
overall process of Natural Language Processing (NLP) and 
Machine Learning (ML) techniques employed efficiently to 
yield balanced and better performance on test and train data.  

5. Limitations and Future work 
The major limitation and challenge for the Resume 

Classification & Recommendation task is finding an 
appropriate and standard dataset to process using the NLP 
techniques and train the ML models. Since the resume is not 
a standard document and there is no specific industry 
standard, thus major efforts were put on processing the 
documents in the dataset which were parsed from different 
formats and layouts. Moreover, the dataset size was a bit 
low to train the ML model for generalized classification. 
However, efforts were put to find a more suitable dataset for 
the classification task. 

The study achieved significant accuracy and 
performance gain on Resume Classification in different job 
categories. Therefore, in future work, the model will be 
extended to match the content of the resume with the 
provided job description. The extension in future work will 
enable the proposed system suitable for the complete 
recruiting process. The proposed system will perform the 
most tedious tasks of recruiting process; categorization and 
recommendation of suitable resumes for a given job 
description. 

6. Conclusion 
Resume classification is a time-consuming, costly, and 

tedious job for an organization. In this regard, this study 
proposed an automated approach that uses various machine 
learning and NLP techniques for the classification of 
Resumes. The proposed methodology used several NLP & 
ML techniques for preprocessing data, feature extraction 
and representation, model construction, and evaluation for 
the Resume Classification task. The study results suggested 
that the TF-IDF vectorizer performed best in feature 
extraction and representation as the extracted features 
yielded excellent results on almost all classifiers.  However, 
the Support Vector Machine (SVM) class algorithms such 

as (Linear, SVC, NuSVC, and SGD) performed 
exceptionally good with over 98% and 96% accuracy 
respectively on the train and unseen test data. The study 
results are quite encouraging to automate the job application 
categorization and recommendation based on the content of 
Resumes. The developed system can be deployed in real-
time settings for an employer to automate the recruiting 
process.  
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