
760  |  	﻿� ETRI Journal. 2019;41(6):760–770.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Deep learning technology based on artificial neural net-
works is being actively studied and it is likely to be applied
extensively in the future. However, because deep learning
frameworks have individualized structures depending on the
application field, they must be structured and implemented
using individualized methods for each application field.
Because such requirements lead to high costs in terms of the
reusability and maintenance of software and code, a stan-
dardized data structure is required.

Nowadays, deep neural networks support various neu-
ral networks (such as AlexNet and LeNet) and an artificial
intelligence system is implemented using a neural network
suitable for the application. Several deep learning frame-
works (such as Tensorflow and Caffe) can be supported by

a system's GPU acceleration and operating system parallel
support as well as large/small systems. Therefore, we need
an interworking support framework that converts pre‐created
learning data and neural networks into a framework that can
be supported by the device of interest.

Internationally, discussions are being held on standard-
izing methods for structuring and visualization and one of
the results is the development of a method called the Neural
Network Exchange Format (NNEF) [1]. NNEF is a standard-
ization method for neural networks. A neural network graph
defined using NNEF can be easily exchanged into various
neural network configuration platforms.

In all deep‐running frameworks, including Tensorflow,
artificial neural networks are represented using computa-
tional graphs. This is similar to expressing the data (tensor)
transferred between two nodes. However, there is a difference

Received: 23 April 2018  |  Revised: 25 March 2019  |  Accepted: 20 May 2019

DOI: 10.4218/etrij.2018-0135

O R I G I N A L A R T I C L E

Interworking technology of neural network and data among deep
learning frameworks

Jaebok Park   | Seungmok Yoo  | Seokjin Yoon  | Kyunghee Lee  | Changsik Cho

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2019 ETRI

Artificial Intelligence Research
Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea

Correspondence
Jaebok Park, Artificial Intelligence
Research Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea.
Email: parkjb@etri.re.kr

Funding information
Institute for Information &
Communications Technology Promotion;
Korea Government (MSIP), Grant/Award
Number: 2017‐0‐00068

Based on the growing demand for neural network technologies, various neural net-
work inference engines are being developed. However, each inference engine has its
own neural network storage format. There is a growing demand for standardization
to solve this problem. This study presents interworking techniques for ensuring the
compatibility of neural networks and data among the various deep learning frame-
works. The proposed technique standardizes the graphic expression grammar and
learning data storage format using the Neural Network Exchange Format (NNEF) of
Khronos. The proposed converter includes a lexical, syntax, and parser. This NNEF
parser converts neural network information into a parsing tree and quantizes data. To
validate the proposed system, we verified that MNIST is immediately executed by
importing AlexNet's neural network and learned data. Therefore, this study contrib-
utes an efficient design technique for a converter that can execute a neural network
and learned data in various frameworks regardless of the storage format of each
framework.

K E Y W O R D S
AI, AlexNet, Caffe, CNN, deep learning, interworking, neural network, NNEF, parser, Tensorflow

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0003-4160-7805
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:parkjb@etri.re.kr

     |  761PARK et al.

in the manner in which each framework expresses the compu-
tational graph. NNEF follows a simple process that consists
of learning neural networks through a consistent format. This
has a major impact on the construction of neural networks
used in the cross‐platform. The purpose of NNEF is to rep-
resent a neural network computational graph in a unified for-
mat instead of in a separate format for each deep learning
framework. In different deep learning frameworks, such as
Tensorflow, artificial neural networks are represented using
computational graphs. However, because the method of ex-
pressing computational graphs differs for each framework,
a standardized method is required to implement neural net-
works in a unified format.

In this study, we propose a method that ensures inter-
working between an artificial intelligence system and a
neural network processing system by supporting the in-
teroperable neural network standard format established by
Khronos [2]. We developed a parser for neural networks
and data based on NNEF to achieve a convenient config-
uration for the neural networks used in a cross‐platform.
This study shows that conversion of a neural network and
data can be performed using AlexNet [3] directly through
our proposed converter. Thus, this study provides a design
method and implementation technology for interoperable
standard formats and interworking among neural network
processing systems.

The rest of this paper is organized as follows. In Section
2, we discuss some basics and previous studies related to
this research. Section 3 introduces an inference engine and
learning data model for deep learning. In addition, we in-
troduce the structure and design technologies of Khronos’
NNEF. Section 4 presents the implementation methods of
the proposed interworking framework. Section 5 shows that
our framework is driven quickly using real neural networks
and learning data. Finally, Section 6 concludes this paper and
Section 7 highlights areas for future research.

2  |   RELATED WORKS

Machine learning technology using deep neural networks
is extremely important because it surpasses human perfor-
mance in many areas. Owing to the particular attention being
paid to artificial neural networks, several approaches have
been developed to handle inference steps that are executed
on inference engines by constructing and training neural net-
works [4].

Inference technologies using cloud and learning generally
employ cloud‐based inference engines such as Google's TPU,
but they use similar hardware (mostly the GPU). In contrast,
inference techniques for devices at edge points rely on opti-
mized hardware accelerators and require special optimization
techniques [5,6].

Several deep learning frameworks are currently known
and in this section, we will briefly review the most commonly
used frameworks. First, Tensorflow [7], which was developed
by the Google Brain team, was made open source in 2015.
Tensorflow is available for multiple CPUs and GPUs on all
platforms, desktop and mobile, as a Python‐based library [8].
In addition, Tensorflow can support other languages, such as
C++ and R, and can directly create deep‐running models. It
can write models using a wrapper library such as Keras.

Caffe [9] is among the earliest developed deep learn-
ing frameworks; it was developed primarily at the Berkeley
Vision and Learning Center (BVLC). It is also a C++ library
with a Python interface, which it uses as a default application
when modeling a convolutional neural network (CNN) [10].
One of the key benefits of using this library is that it can
directly use many pretrained networks from the Caffe Model
Zoo. Facebook [11] released a lightweight modular deep
learning framework, Caffe2, to build a high‐performance
open learning model using Caffe.

Torch [12] is a Lua‐based deep‐running framework devel-
oped by large players such as Facebook, Twitter, and Google.
Its parallel processing uses the C/C++ library and CUDA
[13,14] for GPU processing. In addition, Torch's Python im-
plementation, called PyTorch [15], is gaining popularity and
is rapidly being adopted.

Theano [16] is very useful for numerical calculations with
CPUs and GPUs. It has a low‐level library and can simplify
processes by directly creating a deep learning model or by
applying the wrapper library on top of it. However, unlike
other extended learning frameworks, it is not scalable and
lacks support for multiple GPUs.

Keras [17] was developed as a simplified interface for ef-
ficient neural network construction and can be configured to
work with Theano or Tensorflow. It is written in Python and
is very light and easy to learn. Its greatest advantage is that
it can be used to create neural networks from a few lines of
code. Table 1 shows the features of each of these described
frameworks.

In recent years, there has been a growing demand for neu-
ral network technology, which has resulted in an increasing
interest in its standardization. An application programming
interface (API)‐independent file format standard has been es-
tablished for data exchange between deep learning systems
and interface engines. NNEF and ONNX [18,19] support
deep‐learning interworking technologies [20‒22] that can
easily transform neural network graphs into other neural net-
work configuration platforms.

ONNX is an open source library and acts as a serial-
ization format that encodes and decodes in‐depth learn-
ing models. ONNX is supported on Apache MXNet [23],
PyTorch, TensorRT [24], and other well‐known in‐depth
learning frameworks. In contrast, NNEF was developed by
a group of non‐profit standards organizations that include

762  |     PARK et al.

many hardware and software developers as members; com-
panies or universities can participate in the standardiza-
tion process through a proven multicompany management
model. NNEF is a popular standardization method for neu-
ral networks. The neural network graph defined by NNEF
can be exchanged with several other neural network config-
uration platforms.

Representatively, the Khronos Group has attempted to
connect software with hardware and proposed an open stan-
dardization method to abstract hardware details on which
software developers can work on a single platform. For
example, the OpenVX [25] standard provides graph‐based
APIs for accelerating computer vision hardware, including
neural‐based systems, by bringing trained networks into the
graph. A common example of NNEFs is the transformation
of a neural network between corresponding inference en-
gines using a framework such as Caffe or Tensorflow. The
purpose of NNEF is to make available a source code to
generate neural networks with a hierarchical design in an
intuitive manner. We primarily use it to load trained net-
works for inference using NNEF. Many research groups,
including the Khronos Group, are involved in preparing a
standard exchange format to link learning frameworks with
inference engines. NNEF makes it easy to access all frame-
works, thus allowing engineers to support a cross‐platform

in an open extensible transport format. However, the NNEF
standard is still being defined in global research.

3  |   NEURAL NETWORK
INTERWORKING ARCHITECTURE

The process of an artificial intelligence neural network can be
roughly divided into a learning engine and an inference engine
for determining output data from given input data, as shown in
Figure 1. The learning engine determines the operating func-
tions and parameters in the neural network so that the user can
generate the desired output through sample input data. The
inference engine performs a series of processes that can gener-
ate output data from new input data using the neural network
structure information learned through the learning engine.

Most learning and inference engines consist of a single
set. Each of them can be separated but the structure of the
storage method of the learned neural network, which de-
pends on the product used, developer, and other factors, may
be different between the learning engine and inference en-
gine. Therefore, various neural network inference engines are
being developed. Each inference engine has its own neural
network storage format.

To solve this problem, an interworking framework is
necessary between the learning system model and inference
model. Figure 2 shows the current network format structure,
interworking problems, and the need for a neural network
format.

The standards organization, Khronos Group, established
the NNEF to solve this problem. NNEF enables collaboration
between the learning engine and inference engine by defin-
ing a standardized neural network structure storage format.

T A B L E 1   Features of each framework

Framework Interface Language Platform CUDA OpenMP OpenCL RBM/DBNs

Tensorflow Python,
(C/C++ public
API only for
executing graphs)

C++,
Python,
Java

Linux,
Mac,
Windows

Y N SYCL
Tri‐sycl
tf‐coriander

Y

Caffe C++,
Command line,
Python,
MATLAB

C++,
MATLAB

Linux,
OS X,
AWS
Mac

Y N Roadmap only Y

Torch Lua,
LuaJIT, C,
C++

C, Lua Cross‐
Platform

Y Y Under development Y

Theano Python Python Cross‐
Platform

Y Y Under development N

Keras Python Python Linux,
Mac,
Windows

Y Y (Theano)
N (TF)

Roadmap only ?

F I G U R E 1   Separated learning and inference systems

Learning
engine

Inference
engine

Neural
network

graph info.
Input
data

Output
data

     |  763PARK et al.

The Khronos Group is working on the development of a draft
standard for graphical representation grammar and learning
data storage formats for neural network inference engines.
Version 1.0 is currently under revision.

NNEF can be used as a document to store graph infor-
mation and data learned through a learning engine. It can
also update the content described in the NNEF by extend-
ing and learning from existing stored data. In addition,
through the parser, the target inference engine can generate
code to implement the application service. The NNEF in-
cludes a primitive operation corresponding to a mathemat-
ical equation, which represents the operation of the neural
network unit, as shown in Figure 3. It also includes a com-
pound operation that provides a level of interface similar
to the functions of C language by binding several primitive
operations. In addition, it includes a graph that describes
the interface defined at the top of the input and output of
the neural network. The syntax of this NNEF is defined as
a Backus‐Naur Form (BNF).

NNEF defines a fragment by grouping a set of primitive
operations and compound operations to define the language
grammatically and represent nodes in the neural network. A

fragment expresses functions in the text format for neural
network data storage or operation. A fragment can receive
parameter values similar to C/C++ functions or class defini-
tions and can conduct neural network operations or call other
fragments within a fragment.

Figure 4 shows the syntax, specifications, declaration,
and type, which are part of the syntax structure of the NNEF
format. In addition, the syntax structure of graph fragments
is a fragment prototype that defines names, type parameters,
and types, as shown in Figure 5. Fragment bodies can define
other fragments, primitive invocations, parameter values of
the type parameters, and operation behaviors.

F I G U R E 2   Necessity of standardizing
neural networks

Learning
engine #1

Neural network
graph info format #1

Inference
engine #1

Learning
engine #2

Neural network
graph info format #2

Inference
engine #2

Learning
engine #3

neural network
graph info format #3

Inference
engine #3

Framework 1

Framework 2

Framework 3

Inference
engine A

Inference
engine B

Inference
engine C

Learning
engine #1

Inference
engine #1

Learning
engine #2

Neural network
graph information
standard format

Inference
engine #2

Learning
engine #3

Inference
engine #3

Currently using the exclusive neural
network format

Interconnection between inference/
learning engines is not possible

Necessity of standardization for neural
network format

F I G U R E 3   Example of a neural network graph structure in
NNEF

F I G U R E 4   Syntax structure of the NNEF format

F I G U R E 5   Example of a neural network graph expressed by
NNEF

764  |     PARK et al.

4  |   IMPLEMENTATION

A neural network interoperability format converter (NNEF
parser) performs conversion into codes that can recognize
inference engines or other learning engines to input a docu-
ment written in the NNEF grammar, as shown in Figure 6.

The transformable neural network proposed in this study
had the same structure as a convolutional neural network (eg,
AlexNet, GoogleNet, and LeNet), which includes repeated con-
volutions and pools, as shown in Figure 7. The implemented
source code for neural network structures is shown in Figure 8.
These neural networks were converted into the desired frame-
work structure. To efficiently translate these structures, we de-
veloped a framework to translate the desired framework code
using a parser tree through symbol rules according to NNEF
basic grammar, which was redefined by the Khronos group.

The learning of deep neural networks requires consider-
able processing capacity and time, and therefore, it is carried
out on devices with high computational power such as GPU
processors. Hence, depending on the framework supported
by small devices such as embedded systems, a technique

capable of converting and driving learning data and neural
networks is required, which is one of the objectives of the
technique proposed in this study.

The NNEF parser was designed as an open source. We
used LEX [26] to support lexical analysis and YACC [27]
to automate parser generation. Moreover, we defined a token
analysis rule that can recognize symbols defined in the NNEF
document using LEX and YACC. In order to enable YACC
to analyze sentences, we converted it into a grammar that
YACC can recognize; this grammar is based on BNF, which
is defined in NNEF.

As shown in Figure 9, the NNEF parser is designed to
generate a parse tree corresponding to the NNEF document
through YACC. We also added a plug‐in conversion code
generator that converts this parse tree into a code that can be
recognized by the target inference engine.

As shown in Figure 10, the structural design of the neural
network interworking module generates an NNEF file that
represents the node structure of the neural network. It also
generates a file that stores the learning data accompanying
the neural network structure. Each inference engine can pro-
ceed by further learning or modifying the graphical structure
using NNEF files. In addition, it is designed as an API that
allows the inference to be executed using the syntax expressed
in NNEF.

Considering prototype implementation and API design
of a lexical analyzer in the interworking support module of
a neural network, we employed token separation functions,
such as the character set, literal, and symbol, defined in
NNEF, as shown in Figure 11. In addition, we defined the
main keywords and separation functions to define grammar.
We also added LEX rules for processing comments, new
lines, and other aspects.

The API deign of syntax analysis in the neural network
support module changed the NNEF grammar defined by

F I G U R E 6   Conceptual diagram of a neural network information
storage model

NNEF parserNNEF
document

Neural
network

processing
code

Neural
network

processing
code

Neural
network

processing
code

Tensorflow

Caffe

Theano

* NNEF: Neural Network Exchange Format

F I G U R E 7   Structure of convolutional neural networks, such as AlexNet: Reprinted from X. Han et al., Pre-trained AlexNet architecture with
pyramid pooling and supervision for high spatial resolution remote sensing image scene classification, Remote Sensing, 9 (2017) doi:10.3390/
rs9080848 , CC BY 4.0.

https://doi.org/10.3390/rs9080848
https://doi.org/10.3390/rs9080848

     |  765PARK et al.

BNF into YACC. We also changed the grammar of am-
biguously defined syntax in the NNEF standard docu-
ment. Thus, an interface could be implemented between
the LEX and YACC modules. Figure 12 shows some
codes used for the syntax analyzer of the NNEF parser.

The learning data storage model processes learning data
and saves it in a data format supported by NNEF by combin-
ing the NNEF header and data. Table 2 shows the structure
of the NNEF‐based data format header. Data quantization
is achieved by quantizing and storing data to develop a
quantized function according to the recommendations of
the Khronos group's NNEF. In contrast, when fetching data,
quantized data is released using the imquantize function.

The proposed system constructs an inference engine
based on Tensorflow by importing AlexNet's neural net-
work information and learning data based on NNEF. For
the first time, we implemented NNEF_Data_Reading and
NNEF_Network_Reading functions to read neural net-
work graphs and learn data. NNEF_Network_Reading re-
places the neural network based on NNEF with Tensorflow
codes using our interworking support framework and
compiles it to run the transformed code in Tensorflow.
Figure 13 illustrates a NNEF file reading function for
conversion into executable code in Tensorflow after

importing the NNEF‐based neural network information.
NNEF_Data_Reading creates Tensorflow variables that
can be employed by interpreting NNEF protocol‐based
data files using the learning data interoperability support
framework. Figure 14 shows the process of replacing the
data that can be run on Tensorflow by analyzing NNEF‐
based data. It should be noted that parameter 12 indicates
12 data files. "/Temp/dat/" represents the folder with data.

5  |   RESULT

The interpreter of the proposed interworking converts an
NNEF‐based neural network, shown in Figure 8A, into neu-
ral network codes based on Tensorflow, shown in Figure 8B.

The implementation results of the proposed system can
be verified through MNIST operation, which was conducted
to import AlexNet neural network information and learning
data based on NNEF in Tensorflow, as shown in Figure 15.

Figure 16 shows that results can be obtained quickly by
constructing an inference engine using Tensorflow codes, as
shown in Figure 15. Thus, the proposed system makes it possi-
ble to quickly run an AI inference engine by importing neural
network information and learning data based on NNEF.

F I G U R E 8   Generating Tensorflow codes using the proposed converter: (A) NNEF‐based AlexNet and (B) Tensorflow‐based neural network
codes generated by the proposed framework

(A)

766  |     PARK et al.

6  |   CONCLUSION

Owing to their different storage structures, AI deep learning
frameworks require standardization for code reuse and main-
tenance. The standardized NNEF can execute stored neural F I G U R E 1 1   Some codes used for the lexical analyzer

F I G U R E 1 0   Operation structure of the NNEF parser

(B)

F I G U R E 8   (Continued)

F I G U R E 9   NNEF parsing process sequence

Lexical
analysis

NNEF
document

Symbol
rules to

LEX

Syntax
analysis

BNF
to

YACC

parse
tree

To generate
conversion

codes
Neural network
processing code

* NNEF: Neural Network Exchange Format
* BNF: Backus–Naur Form

     |  767PARK et al.

networks and data (inference engine) with a unique format on
various deep learning frameworks without having to follow
the particular format of each framework.

This study describes the design of converters for neu-
ral network interoperability based on NNEF. The proposed
system presents an interworking framework in which a
NNEF‐based neural network can be transformed into a com-
putational graph for various deep learning frameworks. In
particular, the proposed system can be run directly on the de-
sired deep‐running framework by converting the file based
on NNEF using top‐down parsing‐based lexical, syntax,

and semantic analyses. We included the conversion tech-
nologies for neural networks and learned data. Additionally,
we tested the running of AlexNet on Tensorflow by con-
verting a neural network and data based on NNEF.

7  |   FUTURE WORK

In the future, NNEF and ONNX are to be studied for de-
veloping neural network standards. Both technologies have
their own advantages and disadvantages. If compatibility
can be achieved between these two standards, it would be
a landmark achievement. In addition, ONNX's neural net-
works and data formats should be further standardized using
protocol buffers. We believe that NNEF’s formats can im-
prove interoperability using a formal format, such as proto-
col buffer. The interworking technology should be studied
so that the existing neural network and learning data can be

F I G U R E 1 2   Some codes used for the syntax analyzer

T A B L E 2   Data format structure based on NNEF

Item Bit

NNEF data identification number 0x4E 0xEF

Version information 0x00 0x01

Offset information of actual data 0x00 0x00 0x00 0xFF

Order of tensor 0x00 0x00 0x00 0x00

Range of tensor 0x00 0x00 0x00 0x00

Type of tensor 0x00: 0bit: 0: float values:
1: quantized values
2: signed integer values
3: unsigned integer values

Bit width for each item of Tensor 0x00

Quantization algorithm length 0x00 0x00

F I G U R E 1 3   Reading function for an NNEF‐based neural
network

F I G U R E 1 4   Reading function for NNEF‐based data

768  |     PARK et al.

optimally transformed for high performance beyond a simple
transformation.

FUNDING INFORMATION

This work was supported by the Institute for Information &
Communications Technology Promotion (IITP) grant funded

by the Korea Government (MSIP) (No. 2017‐0‐00068, A
Development of Driving Decision Engine for Autonomous
Driving (4th) using Driving Experience Information).

ORCID

Jaebok Park https://orcid.org/0000-0003-4160-7805

F I G U R E 1 5   Importing NNEF files
on Tensorflow and MNIST operation screen

F I G U R E 1 6   Output of MNIST accuracy based on AlexNet

Reading the learning data

Output the result value

https://orcid.org/0000-0003-4160-7805
https://orcid.org/0000-0003-4160-7805

     |  769PARK et al.

REFERENCES

	 1.	 Khronos, Neural network exchange format (NNEF) specification,
Beaverton, OR, USA, 2018.

	 2.	 H. Deepika, N. Mangala, and S.C. Babu, Automatic program gen-
eration for heterogeneous architectures, in Proc. Int. Adv. Comput.,
Commun. Inf. Conf., Jaipur, India, Sept. 2016, pp. 102–109.

	 3.	 A. Krizhevsky, I. Sutskever, and G.E. Hinton, Imagenet classifica-
tion with deep convolutional neural networks, in Proc. Int. Neural Inf.
Process. Syst. Conf., Lake Tahoe, NV, USA, Dec. 2012, pp. 1097–1105.

	 4.	 K. Simonyan and A. Zisserman, Very deep convolutional net-
works for large‐scale image recognition, in Proc. Int. Learn.
Representations Conf., San Diego, CA, USA, May 2015, pp. 1–14.

	 5.	 Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature J. 521
(2015), 436–444.

	 6.	 J. Deng et al., Imagenet: A large‐scale hierarchical image database,
in Proc. Int. IEEE Comput. Vision Pattern Recogn. Conf., Miami,
FL, USA, June 2009, pp. 248–255.

	 7.	 M. Abadi et al., TensorFlow: Large‐scale machine learning on het-
erogeneous distributed systems, in Proc. Int. USENIX Symp. Oper.
Syst. Des. Implement., Savannah, GA, USA, 2016, pp. 265–283.

	 8.	 F. Chollet, Deep learning with python, Manning Publications,
Shelter Island, NY, 2017.

	 9.	 Y. Jia et al., Caffe: Convolutional architecture for fast feature em-
bedding, in Proc. Int. ACM Multimedia Conf., Orlando, FL, USA,
Nov. 2014, pp. 675–678.

	10.	 I. Serrano et al., Fight recognition in video using hough forests and
2D convolutional neural network, IEEE Trans. Image Process. 27
(2018), no. 10, 4787–4797.

	11.	 Facebook Open Source, Caffe2: a new lightweight, modular, and scal-
able deep learning framework, Accessed Jan. 2018, http://caffe2.ai

	12.	 R. Collobert, K. Kavukcuoglu, and C. Farabet, Torch7: A MATLAB‐
like environment for machine learning, BigLearn, NIPS Workshop,
no. EPFL‐CONF‐192376, 2011.

	13.	 H. Adie, I. Paradana, and Pranowo, Parallel computing accelerated
image inpainting using GPU CUDA, Theano, and Tensorflow, in
Proc Int. Inf. Technol. Electr. Eng., Kuta, Indonesia, July 2018, pp.
621–625.

	14.	 S. Chetlur et al., CUDNN: Efficient primitives for deep learning,
CoRR (2014). http://arxiv.org/abs/1410.0759

	15.	 T.M. Breuel, High performance text recognition using a hybrid
convolutional‐LSTM implementation, in Proc. Int. IEEE IAPR
Document Anal. Recogn., Kyoto, Japan, Nov. 2017, pp. 11–16.

	16.	 The Theano Development Team, Theano: a python framework
for fast computation of mathematical expressions, arXiv preprint,
2016, arXiv:1605.02688.

	17.	 F. Chollet, Keras: deep learning library for Theano and Tensorflow,
GitHub Repository, Tech. Rep., 2015, https​://keras.io/getti​ng-start​
ed/faq/#how-should-i-cite-keras​

	18.	 H. Kim et al., Applied machine learning at Facebook: a data-
center infrastructure perspective, in Proc. Int. IEEE Symp. High
Performance Comput. Architecture, Vienna, Austria, Feb. 2018,
pp. 620–629.

	19.	 J.Q. Candela, Facebook and Microsoft introduce new open ecosys-
tem for interchangeable AI frameworks, Sept. 2017.

	20.	 J. Ambrosi et al., Hardware‐software co‐design for an analog‐
digital accelerator for machine learning, in Proc. Int. IEEE
Rebooting Comput., Mclean, VA, USA, Nov. 2018, pp. 1–13.

	21.	 B. Seo et al., Top‐down parsing for Neural Network Exchange
Format (NNEF) in TensorFlow‐based deep learning computation, in
Proc. Int. Inf. Netw., Chiang Mai, Thailand, Jan. 2018, pp. 522–524.

	22.	 M. Shin et al., Neural network syntax analyzer for embedded stan-
dardized deep learning, in Proc. Int. Workshop Embedded Mobile
Deep Learn., Munich, Germany, June 2018, pp. 37–41.

	23.	 T. Chen et al., MXNet: A flexible and efficient machine learning li-
brary for heterogeneous distributed systems, arXiv preprint, 2015,
arXiv:1512.01274.

	24.	 J. Hanhirova et al., Latency and throughput characterization of
convolutional neural networks for mobile computer vision, in Proc.
Int. ACM Multimedia Syst. Conf., Amsterdam, Netherlands, June
2018, pp. 204–215.

	25.	 Z. Guo, J. Han, and T. Li, Implementing OpenVX on a polymor-
phous array processor, in Proc. Int. IEEE Commun. Technol.
Conf., Hangzhou, China, Oct. 2015, pp. 598–601.

	26.	 M. Upadhyaya, Simple calculator compiler using Lex and YACC, in
Proc. Int. IEEE Electron. Comput. Technol. Conf., Kanyakumari,
India, Apr. 2011, pp. 182–187.

	27.	 P. Nakwijit and P. Ratanaworabhan, A parser generator using the
Grammar Flow Graph, in Proc. Int. IEEE Comput. Sci. Eng. Conf.,
Chiang Mai, Thiland, Nov. 2015, pp. 1–6.

AUTHOR BIOGRAPHIES

Jaebok Park received his PhD degree
in Computer Engineering from
Chonbuk National University, Jeonju,
Korea in 2011 and MS degree in
Computer Engineering from
Chungnam National University,
Daejeon, Korea in 2007. He joined the

Electronics and Telecommunications Research Institute
(ETRI), Daejeon, Korea in September 2011. His research
interests include localization, tracking, machine learning
frameworks, and inference engines for embedded
systems.

Seungmok Yoo is a principal re-
searcher at ETRI. He received his BS
and MS degrees in Computer
Engineering from Kyungpook
National University, Daegu, Korea in
1994 and 1996, respectively. He re-
ceived a PhD in Electrical and

Computer Engineering from UC Irvine, Irvine, CA, USA
in 2007. He was a researcher at the Agency for Defense
Development, Daejeon, Korea from 1996 to 2001. His
research interests include machine learning frameworks
and inference engines, node architecture design, MAC
and routing protocol design, and distributed real‐time
system in wireless sensor networks and embedded
systems.

http://caffe2.ai
http://arxiv.org/abs/1410.0759
https://keras.io/getting-started/faq/#how-should-i-cite-keras
https://keras.io/getting-started/faq/#how-should-i-cite-keras

770  |     PARK et al.

Seokjin Yoon received his BS and MS
degrees from Chung‐Ang University,
Seoul, Korea in 1992 and 1994, re-
spectively. He is now a principal mem-
ber of the research staff at ETRI. His
main research interests are high speed
computing platforms and mobile
systems.

Kyunghee Lee received his BS and
MS degrees from Kyungpook National
University, Daegu, Korea in 1990 and
1992, respectively. He is now a princi-
pal member of the research staff at
ETRI. His main research interests are
embedded systems, high speed com-

puting platforms, and real‐time systems.

Changsik Cho received his PhD from
ChungNam National University, Korea
in 2011 and BS and MS degrees from
KyungPook National University,
Korea in 1993 and 1995, respectively.
In January 1995, he joined ETRI,
where he is currently a principal re-

searcher. His research interests are machine learning
frameworks and inference engines for embedded systems.

