• Title/Summary/Keyword: lean concrete base

Search Result 16, Processing Time 0.019 seconds

Application of Granulated Blast Furnace Slag to the Lean Concrete Base of Concrete Pavement (콘크리트포장 린콘크리트 기층에 고로슬래그 미분말 적용에 관한 연구)

  • 류명찬;엄주용;김대영;손진군
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.187-190
    • /
    • 1999
  • An experimental study is carried out to estimate the way of applying the granulated blast furnace slag[GBFS] to the lean concrete base of concrete pavement. According to the test results, this application seems promising. For this application, mixing percent of GBFS ranging from 30 to 50 is recommendable at this stage. And performance of base mixed with GBFS is greatly affected by the curing and placing condition. As long as all requirements for application of GBFS to the base is satisfied, better performance is expected.

  • PDF

Performance Analysis of Strength Development of FRC Base Depending on Maturity (적산온도에 의한 FRC 기층의 강도발현 성능 분석)

  • Choi, Sung-Yong;Park, Young-Hwan;Jung, Woo-Tai
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • PURPOSES : In this study, we analyzed the compressive strength characteristics of lean base concrete in relation to changes in the outdoor temperature after analyzing the cold and hot weather temperature standards and calculated the minimum and maximum temperatures when pouring concrete. We examined the rate of strength development of lean base concrete in relation to the temperature change and derived an appropriate analysis formula for FRC base structures by assigning the accumulated strength data and existing maturity formula. METHODS : We measured the strength changes at three curing temperatures (5, 20, and $35^{\circ}C$) by curing the concrete in a temperature range that covered the lowest temperature of the cold period, $5^{\circ}C$, to the highest temperature of the hot period, $35^{\circ}C$. We assigned the general lean concrete and FRC as test variables. A strength test was planned to measure the strength after 3, 5, 7, 14, and 28 days. RESULTS : According to the results of compressive strength tests of plain concrete and FRC in relation to curing temperature, the plain concrete had a compressive strength greater than 5 MPa at all curing temperatures on day 5 and satisfied the lean concrete standard. In the case of FRC, because the initial strength was substantially reduced as a result of a 30% substitution of fly ash, it did not satisfy the strength standard of 5 MPa when it was cured at $5^{\circ}C$ on day 7. In addition, because the fly ash in the FRC caused a Pozzolanic reaction with the progress into late age, the amount of strength development increased. In the case of a curing temperature of $20^{\circ}C$, the FRC strength was about 66% on day 3 compared with the plain concrete, but it is increased to about 77% on day 28. In the case of a curing temperature of $35^{\circ}C$, the FRC strength development rate was about 63% on day 3 compared with the plain concrete, but it increased to about 88% on day 28. CONCLUSIONS : We derived a strength analysis formula using the maturity temperatures with all the strength data and presented the point in time when it reached the base concrete standard, which was 5 MPa for each air temperature. We believe that our findings could be utilized as a reference in the construction of base concrete for a site during a cold or hot weather period.

Application of Recycled Aggregate in Job site as Anti-freezing and Lean Concrete Base Materials (현장파쇄 재생골재의 동상방지층 및 빈배합 콘크리트 기층 시험시공연구)

  • Kim, Jin-Cheol;Shim, Jae-Won;Cho, Kyou-Sung;Choi, Go-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.25-33
    • /
    • 2004
  • The waste concrete produced by the process of the highway construction and management, has been crushed in-situ, and the waste aggregate has been experimentally used for anti-freezing layer and lean concrete. After testing the bearing capacity on anti-freezing layer, it was found that when the waste aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2$\sim$20mm sieve increased by 5$\sim$13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. The compressive strength of lean concrete using recycled aggregate was 71$\sim$85% of the natural coarce aggregate made, but nevertheless the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, $57.5kgf/cm^2$.

  • PDF

Application of Aggregate Recycled in-situ for Anti-frost Layer and Lean Concrete Base Course (저노현장파쇄 순환골재의 동상방지층 및 빈배합콘크리트기층 정용성평가)

  • Kim Jin-cheol;Shim Jae-won;Cho Kyou-sung
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.10-16
    • /
    • 2005
  • In order to recycle the waste concrete from which the reproductive aggregate should be produced in-situ, the applicability of crushers and recycled aggregates, and the compliance with the specification have been evaluated comprehensively. As a result of them, the properties of recycled aggregate particles were inferior to the natural one because of the adherent mortars on the recycled one, and the mobile impact crusher and the eccentric-mounted cone and jaw were superior to the others for the graded aggregates. In the case of anti-frost layer, the recycled one was easily controlled since the dry densities, contrary to natural one, were not largely changed with the moisture contents. It was found that the lean concrete base course is not influenced by absorption as cement dust grows larger, and the 7-day compressive strengths of lean concrete were higher than 10 MPa regardless of the crushing type.

Evaluation of Impurity Content Criteria of Recycled Aggregate for Lean Concrete Base (빈배합 콘크리트 기층용 순환골재의 이물질 품질기준 적정성 연구)

  • Kim, Nam-Ho;Yang, Seung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-76
    • /
    • 2012
  • A recent shortage in Korean aggregate market leads a social demand to utilize recycled aggregate to more advanced level, such as the use in concrete structures or paving materials for surface and base layers. Government announced a recycled aggregate guideline in 2009 to provide an institutional framework for recycled aggregate in such an up-scaled use. The use of recycled aggregate in such use; however, is very minimal. This paper evaluates the validity of the impurity content criteria of recycled aggregate for lean concrete base through a series of material tests. The analysis results shows that reclaimed asphalt pavement (RAP) in recycled aggregate not only influence a strength lean concrete adversely, but also influence negatively on an absorption and abrasion characteristics of aggregate system significantly that made those two indices lower. Since absorption and abrasion characteristics are very important indices for recycled aggregate quality, RAP in recycled aggregate could significantly mislead the recycled aggregate qualification. This paper provides a suggestion to resolve these problems.

Assessment of Application of the Recycled Aggregate Crushed in-situ for Anti-freezing Layer and Lean Concrete Base Course (현장파쇄 순환골재의 동상방지층 및 빈배합 콘크리트층에 대한 적용성 평가)

  • Kim, Jin-Cheol;Kim, Hong-Sam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.98-107
    • /
    • 2005
  • In other to recycle the waste concrete produced in stiu on the construction and management in highway, the recycled aggregates were experimentally examined in a practical application for anti-freezing layer and lean concrete base course. From the results, the mobile impact crusher and the eccentric-mounted cone and jaw were superior to the others for the graded aggregates. In the case of anti-freezing layer, the recycled one was easily controlled since the dry densities, contrary to natural one, were not largely changed with the moisture contents. It was found that the 7days compressive strengths of lean concrete were above the 10MPa regardless of the crushing types. From the result of testing the bearing capacity of anti-freezing layer, it was found that when the recycled aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2-20mm sieve increased by 5~13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. Although the compressive strength of lean concrete was 71~85% of the natural coarse aggregate, the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, 5.8MPa.

  • PDF

Evaluation of Mechanical Properties and Fiber Dispersing Characteristics of Fiber Reinforced Lean Concrete Using Fly Ash and Reject Ash (도로 기층 재료로 활용하기 위한 섬유보강 빈배합 콘크리트에 플라이애시와 리젝트애시를 사용한 경우 역학적 특성 및 섬유 분산성 분석)

  • Jang, Young Jae;Park, Cheol Woo;Park, Young Hwan;Yoo, Pyeong Jun;Jung, Woo Tae;Kim, Yong Jae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • PURPOSES: As pavement generally provides service shorter than an expected life cycle, maintenance cost increases gradually. In order to help extending the service life and reduce maintenance cost, a new multi-functional composite pavement system is being developed in Korea. METHODS: This study is a part to develop the multi-functional composite pavement and is to investigate the mechanical performances of fiber-reinforced lean concrete for pavement subbase. The inherent problem of fiber reinforced concrete is dispersion of fibers in concrete mix. This study additionally evaluated fiber dispersion characteristics with respect to different fiber types. RESULTS: From the test results, the compressive strengths of the concretes satisfied the required limit of 5MPa at 7days. The standard deviation of the measured number of fibers were lower in the order of nylon, steel fiber and polypropylene. CONCLUSIONS: Reject ash was shown to be satisfactory as a replacement material to Portland cement in lean concrete base. The fiber volume fraction is suggested to be 0.4% even though the fracture toughness did not vary significantly with respect to fiber types. However, fracture energy absorbed up to complete failure increased with the increased fiber volume fraction increment.

Mechanical Performance of Fiber Reinforced Lean Concrete for Subbase of Newly Developed Multi-Functional Composite Pavement System (다기능 복합 포장용 섬유보강 콘크리트 기층 재료의 역학적 특성평가)

  • Jang, Young-Jae;Park, Cheol-Woo;Park, Young-Hwan;Jung, Woo-Tai;Choi, Sung-Yong;Yoo, Pyeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.21-29
    • /
    • 2012
  • PURPOSES: This study is to investigate the mechanical performance of the fiber reinforced lean concrete with respect to different types of fibers. METHODS: Increased vehicle weight and other causes from the exposed conditions have accelerated the deteriorations of road pavement. A new multi-functional composite pavement system is being developed recently in order to extend service life and upgrade the pavement. A variety of tests were conducted before and after hardening of the concrete. RESULTS: From the test results, it was found that the use of different types of fibers did not affect the compressive strength development. This might be due to the inherent property of the lean concrete. When steel fibers were used relatively greater flexural strength and flexural fracture toughness were developed. Also addition of fly ash by replacing a part of Portland cement the fracture toughness was slightly increased. CONCLUSIONS: It has been known that the addition of fibers and use of mineral admixture can be positively considered in the development of multi-functional composite pavement system as its required mechanical performance is obtained.

Case Study of Geogrid Reinforcement in Runway of Inchon International Airport (지오그리드를 활용한 인천국제공항 활주로 보강사례)

  • 신은철;오영인;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.105-116
    • /
    • 1999
  • The Inchon International Airport site was formed by reclaimed soil from the sea. The average thickness of soft soil Is about 5 m and most of soft soils are normally consolidated or slightly over consolidated. There are many box culverts which are being constructed under the runways in the airfield. Sometimes, differential settlement can be occurred in the adjacent of box culvert or underground structures at the top layer of runway Soil compaction at very near to the structure is not easy all the time. Thus, one layer of geogrid was placed at the bottom of lean concrete layer for the concrete paved runway and at the middle of cement stabilized sub-base course layer for the asphalt paved runway. The length of geogrid reinforcement is 5m from the end of box culvert for both sides. The extended length of geogrid was 2m from the end of backfill soil in the box culvert. The tensile strength tests of geogrid were conducted for make sure the chemical compatibility with cement treated sub-base material. The location of geogrid placement for the concrete paved runway was evaluated. The construction damage to the geogrid could be occurred. Because the cement treated sub-base layer or lean concrete was spread by the finisher. The magnitude of tensile strength reduction was 1.16%~1.90% due to the construction damage and the ultimate tensile strength is maintained with the specification required. Total area of geogrid placement in this project is about 50,000 $m^2$.

  • PDF

An Impurity Quantitative Study for Pavement Application in Recycled Waste Aggregates (재생골재의 도로적용을 위한 이물질 정량화 연구)

  • Park, Jun-Young;Cho, Yoon-Ho;Lim, Nam-Woong
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.21-29
    • /
    • 2005
  • One way to recycle the construction wastes is to use the waste concrete aggregates as the pavement materials. Although there are many studies and technical developments about waste concrete aggregates, the impurities produced in the process of the aggregate production prevent the use of the waste concrete aggregates in the pavement construction. In this study, the impurities included in the recycled waste aggregates were classified into inorganic and organic ones according to their characteristics, and the influences of each impurities on the pavement performance were presented. It was also showed that the limit of impurity content in the lean concrete base through the correlation between the inorganic impurity content and the compressive strength, and that in the granuler subbase layer through the correlation between the organic impurity content and the modified CBR. In conclusion, it is possible to apply waste concrete aggregates for the pavement when inorganic impurity content is less than 10% in the lean concrete base, and organic impurity content is less than 2% in granular subbase.

  • PDF