• Title/Summary/Keyword: leafy vegetables

Search Result 177, Processing Time 0.031 seconds

Growth and Contents of Anthocyanins and Ascorbic Acid in Lettuce as Affected by Supplemental UV-A LED Irradiation with Different Light Quality and Photoperiod (상이한 광질 및 광주기 하에서 UV-A LED 부가 조사가 상추의 생장, 안토시아닌 및 아스코르빈산 함량에 미치는 영향)

  • Kim, Yong Hyeon;Lee, Jae Su
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.596-606
    • /
    • 2016
  • The growth and contents of anthocyanins and ascorbic acid in lettuce(Lactuca sativa L., 'Jeokchima') as affected by supplemental UV-A LED irradiation under different light quality and photoperiod conditions were analyzed in this study. Five light qualities, namely B (blue LED), R (red LED), BUV (blue LED+UV-A LED), RUV (red LED+UV-A LED) and Control (white fluorescent lamps) with photoperiods of 12/12 hours (day/night), 16/8 hours, or 20/4 hours were provided to investigate the effects of light quality and photoperiod on the growth and accumulation of anthocyanins and ascorbic acid in lettuce leaves. As measured 28 days after transplanting, the number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce were significantly affected by light quality and photoperiod. The number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce grown under R treatment increased with increasing light period. By contrast, leaf development was inhibited, but chlorophyll content increased, under B treatment. Supplemental UV-A irradiation significantly decreased leaf length, leaf width, leaf area and shoot fresh weight. Anthocyanins in lettuce increased significantly with decreasing dark period under B treatment. A synergistic effect of supplemental UV-A LED irradiation on anthocyanins accumulation was found for lettuce leaves grown under R treatment but not B treatment. Ascorbic acid in lettuce was greatly affected by photoperiod. Ascorbic acid content at BUV and RUV treatments increased by 20-30% compared to without UV-A LED irradiation. From these results, it was concluded that growth and contents of anthocyanins and ascorbic acid in lettuce are significantly affected by supplemental UV-A LED irradiation. The results obtained in this study will be informative for efforts to improve the nutritional value of leafy vegetables grown in plant factories.

Physiochemical Properties and Plant Growth of The Hydroponic Substrate Using Waste Wood Chip (양액재배용 목재고형배지의 이화학적 특성과 작물생육 특성)

  • Kwon, Gu-Joong;Yang, Ji-Wook;Park, Hyo-Sub;Cho, Joon-Hyeong;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.400-409
    • /
    • 2015
  • This study examined the plant growth and development characteristics of leafy vegetables on the hydroponic substrates of waste wood chips, radiate pine chips, and mat type of waste wood chips. The bulk density of waste wood chips and radiata pine chips were $0.2g/cm^3$ and $0.16g/cm^3$, respectively. The moisture retention properties of both the radiata pine chips and waste wood chips were found to be similar but not better than those of the control rock wool and coco peat hydroponic substrates. The moisture retention property of the mat type was found to be the lowest. The chemical analysis of waste wood hydroponic substrates (w/v) was as follows.; The pH was 6.59, electric conductivity was 6.76 dS/m, total nitrogen content was 0.5%, C/N ratio was 113%, phosphorus was 10.1 ppm, potassium was 77 ppm, calcium was 531 ppm, magnesium was 49 ppm, and sodium was 96 ppm. The results from the radiata pine chemical analysis showed that it had a pH of 5.29, electric conductivity of 4.49 dS/m, total nitrogen content of 0.32%, C/N ratio of 180%, phosphorus of 6.4 ppm, potassium of 83 ppm, calcium of 97 ppm, magnesium of 29 ppm, and sodium of 59 ppm. Except for the plants grown in mat type, the developmental characteristics of the plants grown in rock wool and coco peat hydroponic substrates were similar. Based on the results of the experiment, waste wood resources may possibly be used as an organic solid medium in place of the existing rock wool and coco peat medium.

The analysis of pesticide residue in leafy vegetables using the modified QuEChERS pre-treatment methods (QuEChERS 시료 처리법을 활용한 엽채류 중 잔류농약분석)

  • Kim, Yang-Hyeon;Hong, Su-Myeong;Son, Kyung-Ae;Lee, Ju-Young;Min, Zaw Win;Kwon, Hye-Young;Kim, Taek-Kyum;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • In analyzing pesticide residue, LLE (liquid liquid extraction) is generally applied as one of the existing methods, but needed quite a lot of organic solvents and analytical apparatuses for the sample pre-treatment. In addition to its long analysis time and complex analytical processes, it is required to develop a more rapid and efficient method at present. In order to establish an economic and simple pesticide residue analytical method, this study carried out a comparative experiment on the existing analytical method with a new sample pre-treatment method named QuEChERS (quick, easy, cheap, effective, rugged and safe), which extracts and refines pesticide components by directly adding solid powder into the sample. Both the two analytical methods showed favorable values of correlation coefficient ($R^2$ > 0.99) of calibration curves. In terms of the detection limit (identification limit), imidacloprid showed 0.02 mg/kg, while the rest of pesticides showed a level around 0.05 mg/kg. The results of this experiment revealed that the recovery of LLE was 92.8-100.9% and the RSD was below 2.5%. On the other hand, the recovery of QuEChERS was 92.2-101.6% and RSD was below 1.9%. As a result of comparing the amount of pesticide residue by the time between the two analytical methods by using Paired t-Test, there was no significant difference between the two analytical methods as the p-value ranged from 0.3148-0.9890. Considering the results of the two methods, the QuEChERS method had similar recovery, compared to the analytical method using the existing LLE, and the analytical time was shortened by about one fourth of that of the existing method. Moreover, since it excludes the use of harmful organic solvents like dichloromethane during the process of extraction, thus leading to protecting experimenters health and remarkably reducing the amount of disused solvents, it is judged as an echo-friendly and economic analytical method.

Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang' (고랭지 여름배추 주산지의 기온을 기준으로 한 수준별 온도가 배추 '춘광'의 생육 및 생리반응에 미치는 영향)

  • Son, In-Chang;Moon, Kyung Hwan;Song, Eun Young;Oh, Soonja;Seo, Hyeongho;Moon, Young Eel;Yang, Jinyoung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.254-260
    • /
    • 2015
  • Changes of the growth, quality and physiological response of Chinese cabbage cv 'Chunkwang' in response to five different temperature treatments based on climate change scenario were investigated during the growing season. The treatments consisted of normal year temperature $-2.0^{\circ}C$ (I), normal year temperature (II; Control group), normal year temperature $+2.0^{\circ}C$ (III), normal year temperature $+4.0^{\circ}C$ (IV), and normal year temperature $+6.0^{\circ}C$ (V). Regarding fresh weight, number of leaves, and leaf area were high in group IV, and V before the head formation stage, but it has decreased during the later growth period. Rate of frangibleness sympton was the highest in group V as 85.7%, and it was decreased in group IV (64.3%), group III (28.6%), group II (14.3%), and group I (7.1%). Regarding photosynthetic rate, group III, IV, and V showed relatively high photosynthetic rate at 20 DAP but it was reduced dramatically during the later growth period. Transpiration and stomatal conductance showed the similar trend with the photosynthetic rate. When comparing the chlorophyll fluorescence reaction of each treatment group at 50 DAP, Fv/Fm in group I was highest as 8.04 among all treatment groups and the lowest in group IV as 7.15.

Anti-inflammatory Activities of Ethanol Extracts of Dried Lettuce (Lactuca sativa L.) (건조 상추 에탄올 추출물의 항염증 활성)

  • Lee, Eun-Joo;Seo, Yu-Mi;Kim, Yong-Hyun;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.325-331
    • /
    • 2019
  • Lettuce (Lactuca sativa L.) is one of the most popular green leafy vegetables, and it contains various beneficial components including polyphenolic compounds and has been known to possess various biological functions such as anti-microbial, anti-oxidative, and anti-inflammatory activities. In the present study, we prepared ethanol extract of dried lettuce (DLE) and investigated its anti-inflammatory activity. To evaluate the anti-inflammatory activity of DLE, nitric oxide (NO) production was measured in LPS-activated mouse macrophage RAW 264.7 cells. DLE significantly suppressed NO production in these cells without affecting cell viabilities while resveratrol was used as a positive control. DLE dramatically decreased the expression of pro-inflammatory genes such as iNOS and COX-2 at the mRNA and protein levels and reduced the expression of several cytokines including $IL-1{\alpha}$, $IL-1{\beta}$, IL-1F6, $TNF-{\alpha}$, CSF2 and CXCL10. In addition, DLE suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating DLE shows its anti-inflammatory activity via regulating MAPKs pathway and $NF-{\kappa}B$ pathways. And also, DLE reduced the production of reactive oxygen species in a dose-dependent manner. DLE increased HO-1 protein expression, and also increased the nuclear translocation of Nrf2. Overall, our results suggest that lettuce down-regulate various pro-inflammatory genes and have its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Research and Development Trends on Omega-3 Fatty Acid Fortified Foodstuffs (오메가 3계 지방산 강화 식품류의 연구개발 동향)

  • 이희애;유익종;이복희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.161-174
    • /
    • 1997
  • Omega-3 fatty acids have been major research interests in medical and nutritional science relating to life sciences since after the epidemiologic data on Green3and Eskimos reported by several researchers clearly showed fewer per capita deaths from heart diseases and a lower incidence of adult diseases. Linolenic acid(LNA) is an essential fatty acid for human beings as well as linoleic acid(LA) due to the fact that vertebrates lack an enzyme required to incorporate a double bond beyond carbon 9 in the chain. In addition the ratio of omega-6 and 3 fatty acids seems to be important in terms of alleviation of heart diseases since LA and LNA competes for the metabolic pathways of eicosanoids synthesis. High consumption of omega-3 fatty acids in seafoods may control heart diseases by reducing blood cholesterol, triglyceride, VLDL, LDL and increasing HDL and by inhibiting plaque development through the formation of antiaggregatory substances like PGI$_2$, PGI$_3$ and TXA$_3$ metabolized from LNA. Omega 3 fatty acids also play an important role in neuronal developments and visual functioning, in turn influence learning behaviors. Current dietary sources of omega-3 fatty acids are limited mostly to seafoods, leafy vegetables, marine and some seed oils and the most appropriate way to provide omega-3 fatty acids is as a part of the normal dietary regimen. The efforts to enhance the intake of omega-3 fatty acids due to several beneficial effects have been made nowadays by way of food processing technology. Two different ways can be applied: one is add Purified and concentrated omega-3 fatty acids into foods and the other is to produce foods with high amounts of omega-3 fatty acids by raising animals with specially formulated feed best for the transfer of omega-3 fatty acids. Recently, items of manufactured and marketed omega-3 fatty acids fortified foodstuffs are pork, milk, cheese, egg, formula milk and ham. In domestic food market, many of them are distributed already, but problem is that nutritional informations on the amounts of omega-3 fatty acids are not presented on the labeling, which might cause distrust of consumers on those products, result in lower sales volumes. It would be very much wise if we consume natural products, result in lower sales volumes. It would be very much wise if we consume natural products high in omega-3 fatty acids to Promote health related to many types of adult diseases rather than processed foods fortified with omega-3 fatty acids.

  • PDF