• Title/Summary/Keyword: leaf temperature

Search Result 1,248, Processing Time 0.029 seconds

Effect of High Temperature and Growth Light Intensity on Fatty Acid Composition of Panax ginseng leaf (고온(高溫)과 재배광도(栽培光度)가 인삼(人蔘) 잎의 지방산(脂肪酸) 조성(組成)에 미치는 영향(影響))

  • Park, Hoon;Park, Hyeon-Suk;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.29 no.4
    • /
    • pp.366-371
    • /
    • 1986
  • Fatty acid compositions of Panax ginseng leaves (6 year) grown under different light intensity in field and of the detached leaves exposed to high temperature (20 hours) were investigated by gas chromatography. Linoleic, linolenic, palmitic and palmitoleic acid were the major components(80%) of leaf lipid. The higher the growth light intensity, the lower the percentage of unsaturated acids or bonds, indicating metabolic adaptation to high temperature. Pattern similarity of fatty acid composition was little changed until 20% light but significantly different at 30%, suggesting 20% as limitation light intensity. The close similarity of fatty acid composition between the loaves grown under 30% light and the one at harvest rises uncertainty between adaptation to high temperature and senescence. Total fatty acid content decreased with the increase of light intensity. Short term high temperature $(25^{\circ}C\;or\;35^{\circ}C)$ increased total fatty acid content, unsaturated acid percentage and insignificant difference in pattern similarity of composition.

  • PDF

Effect of Elevated $\textrm{CO}_2$ and Temperature on the Seedling Characteristics in Green Pepper (Capsicum annuum L. cv, Soonjung) ($\textrm{CO}_2$인 농도 및 온도 환경이 고추의 묘소질에 미치는 영향)

  • 안종길;최영환
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.51-55
    • /
    • 2002
  • Green peppers (Capsicum annuum L. cv, Soonjung) were grown under different combinations of $CO_2$ concentration and temperature levels and examined on the effect of elevated $CO_2$ and temeprature on plant growth, carbon and nitrogen concentrations. Plant height was stimulated by elevated $CO_2$ levels at 20.3 and 22.6$^{\circ}C$. Leaf area and fresh weight were remarkedly increased by high $CO_2$ concentration at 22.6$^{\circ}C$. Dry weights of leaf, stem, root, and whole plant were increased as temperature increased at 611 ppm $CO_2$, but those values decreased at 22.6$^{\circ}C$ in 397 ppm $CO_2$ concentration. Elevated $CO_2$ increased plant growth by 1.5 times at 20.5$^{\circ}C$ and 22.6$^{\circ}C$. C/N ratio increased with increasing temperature under elevated $CO_2$ levels.

Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors

  • Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;Kim, Ki-Deog;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.420-428
    • /
    • 2016
  • For more than 50 years, satellite images have been used to monitor crop growth. Currently, unmanned aerial vehicle (UAV) imagery is being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study refers to the derivation of growth estimating equation for highland Kimchi cabbage using UAV derived normalized difference vegetation index (NDVI) and agro-meteorological factors. Anbandeok area in Gangneung, Gangwon-do, Korea is one of main districts producing highland Kimchi cabbage. UAV imagery was taken in the Anbandeok ten times from early June to early September. Meanwhile, three plant growth parameters, plant height (P.H.), leaf length (L.L.) and outer leaf number (L.N.), were measured for about 40 plants (ten plants per plot) for each ground survey. Six agro-meteorological factors include average temperature; maximum temperature; minimum temperature; accumulated temperature; rainfall and irradiation during growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 93% of the P.H. and L.L. with a root mean square error (RMSE) of 2.22, 1.90 cm. And $NDVI_{UAV}$ and accumulated temperature in the model explain 86% of the L.N. with a RMSE of 4.29. These lead to the result that the characteristics of variations in highland Kimchi cabbage growth according to $NDVI_{UAV}$ and other agro-meteorological factors were well reflected in the model.

Dyeing Properties of Rose Flower Extracts on Silk Fabrics (장미꽃 추출물에 의한 견직물의 염색성)

  • Nam Sung Woo
    • Textile Coloration and Finishing
    • /
    • v.16 no.6
    • /
    • pp.10-15
    • /
    • 2004
  • The colorants were extracted from the flower leaf of rose using a buffer solution. Dyeing properties and the fastness of silk fabrics dyed with rose flower extracts were investigated. K/S values of dyed fabrics were increased as the concentration of rose flower extracts was increased. Optimum dyeing temperature of rose flower extracts was $30^{\circ}C$. Fastness were generally good except light fastness which was extremely poor.

Heading date and final Leaf Number as Affected by Sowing Date and Prediction of Heading Date Based on Leaf Appearance Model in Rice (벼 파종기에 따른 출수기 및 최종 엽수 변화와 출엽 모델에 의한 출수기 예측)

  • 이충근;이변우;신진철;윤영환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • Sowing date experiments were carried out by employing a rice variety "Kwanganbyeo" in both field and phytotron with natural daylength. In phytotron, temperatures were controlled at daily mean of 21$^{\circ}C$ and 24$^{\circ}C$. The responses of final leaf number and beading date were analyzed in relation to daylength during photo-sensitive period (PSP). Based on the component models predicting the final leaf number and leaf appearance rate, a rice phenology model was established and verified. Days from sowing to flowering (DSF) were shortened and final number of leaves (FNL) increased as sowing dates were delayed from 25 April to 5 June in field and phytotron. The increased leaf appearance rate (LAR) and the reduced FNL, respectively, due to the higher temperature and the shorter daylength in delayed sowings in the field brought about greater shortening of DSF than in the phytotron where only FNL was reduced by shorter daylength in delayed sewings. FNL showed very close relationship with the average daylength during PSP of six-leaf stage to panicle initiation, being well fitted to the following rational function ($R^2$=0.98):(equation omitted) where D is daylength and a, b, and c are the constants that were estimated as 14.694, -0.992, and -0.068 in Kwanganbyeo, respectively. The rice phonology model, which was composed of two component models for LAR and FNL, predicted DSF very accurately. The differences between the observed and predicted DSF was less than two days in the sewing date field experiments in 1999 and 2000 of which data were not used for the model construction.struction.

  • PDF

Quality Changes of Mustard Leaf (Dolsangat) Kimchi During Low Temperature Storage (돌산갓김치의 저온 저장중 품질특성 변화)

  • Kim, Haeng-Ran;Cho, Kang-Jin;Kim, Jin-Sook;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.609-614
    • /
    • 2006
  • Quality changes in mustard leaf kimchi were investigated during storage for 60 days at $5^{\circ}C$. As the storage period changed from 0 to 60 days, the pH and reducing sugar content of mustard leaf kimchi decreased, while the total acidity and hunter's color increased. The vitamin C content in mustard leaf kimchi decreased gradually from 10 to 30 days and then markedly increased after 40 days. The total dietary fiber content and antioxidative activity were significantly higher in fresh mustard leaf kimchi than in fermented kimchi. The major volatile components of mustard leaf and mustard leaf kimchi were determined to be allyl isothiocyanate, 3-butenyl isothiocyanate and phenylethyl isothiocyanate. The contents of allyl isothiocyanate and phenylethyl isothiocyanate, the two major functional components, in mustard leaf kimchi were determined to be 43.72 and $36.17\;{\mu}g/g$ dry weight basis, respectively.

Studies on the Effect of Weather Factors upon the Tobacco Yields (잎담배 수량에 영향하는 기상요소에 대한 고찰)

  • Il Hou
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.97-101
    • /
    • 1968
  • Effects of weather factors on leaf tobacco yield were studied from the yield data of flue-cured yellow tobacco variety Yellow pryer and weather recordes for 13 years from 1952 to 1964. The results are summarized as follows; 1. Leaf tobacco yield variation was large and larger coefficient of variance was calculated. 2. Yield of leaf tobacco was correlated largely to leaf number, with simple correlation coefficient r=0.736. Leaf number was correlated largely to sunshine hours during May with r=0.745, and multiple correlation coefficient R=0.837 between leaf number and multiple weather factors during May to June. 3. Leaf tobacco yield was largely affected by the sunshine hours (r=0.717) and temperature (r=0.329) in May and precipitation (r=0.421) in June. 4. From the study of partial regression of leaf tobacco yield on weather factors a formulation Y=441.664-31.255$X_1$+1.19$Y_2$-0.031$X_3$ was calculated for the estimation of leaf tobacco yield. Here R=0.8074 d.f.=7 was significant.

  • PDF

Effects of Elevated Temperature after the Booting Stage on Physiological Characteristics and Grain Development in Wheat (밀에서 출수 후 잎의 생리적 특성 및 종실 생장에 대한 수잉기 이후 고온의 효과)

  • Song, Ki Eun;Choi, Jae Eun;Jung, Jae Gyeong;Ko, Jong Han;Lee, Kyung Do;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.307-317
    • /
    • 2021
  • In recent years, global warming has led to frequent climate change-related problems, and elevated temperatures, among adverse climatic factors, represent a critical problem negatively affecting crop growth and yield. In this context, the present study examined the physiological traits of wheat plants grown under high temperatures. Specifically, the effects of elevated temperatures on seed development after heading were evaluated, and the vegetation indices of different organs were assessed using hyperspectral analysis. Among physiological traits, leaf greenness and OJIP parameters were higher in the high-temperature treatment than in the control treatment. Similarly, the leaf photosynthetic rate during seed development was higher in the high-temperature treatment than in the control treatment. Moreover, temperature by organ was higher in the high-temperature treatment than in the control treatment; consequently, the leaf transpiration rate and stomatal conductance were higher in the control treatment than in the high-temperature treatment. On all measuring dates, the weight of spikes and seeds corresponding to the sink organs was greater in the high-temperature treatment than in the control treatment. Additionally, the seed growth rate was higher in the high-temperature treatment than in the control treatment 14 days after heading, which may be attributed to the higher redistribution of photosynthates at the early stage of seed development in the former. In hyperspectral analysis, the vegetation indices related to leaf chlorophyll content and nitrogen state were higher in the high-temperature treatment than in the control treatment after heading. Our results suggest that elevated temperatures after the booting stage positively affect wheat growth and yield.

Characteristics of Photosynthesis and Dry Matter Accumulation in Japonica and Tongil type Rice (수도자포니카 및 통일형 품종의 광합성 및 물질생산 특성)

  • 허훈;양덕조;류경열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.45-53
    • /
    • 1992
  • This studies were conducted to investigate the physiological characteristics of photosynthesis and dry matter accmulation of 2 Tongil type and 2 Japonica type varieties under different temperature and light intensity condition. Photosynthetic activities were lower in Tongil type varieties than Japonica type at low temperature(17$^{\circ}C$), but higher in Tongil type varieties at high temperature in each growth stages. The degradation rate of photosynthesis was higher in Tongil type varieties than Japonica type varieties at low temperature and Tongil type varieties were showed high photosynthetic activities at high temperature ($25^{\circ}C$). Specific Leaf Area in each growth stages were the highest at tillering and increased from panicle formation stage to heading stage. The ratio of respiration to photosynthesis (R /P$\times$200) into upper three leaves were significantly high in third leaf and showed same slope in each varieties. CGR, NAR were higher in Tongil type varieties than Japonica type varieties and yields, havesting index were showed high in Tongil type varieties.

  • PDF

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.