Effect of Elevated $\textrm{CO}_2$ and Temperature on the Seedling Characteristics in Green Pepper (Capsicum annuum L. cv, Soonjung)

$\textrm{CO}_2$인 농도 및 온도 환경이 고추의 묘소질에 미치는 영향

  • Published : 2002.06.01

Abstract

Green peppers (Capsicum annuum L. cv, Soonjung) were grown under different combinations of $CO_2$ concentration and temperature levels and examined on the effect of elevated $CO_2$ and temeprature on plant growth, carbon and nitrogen concentrations. Plant height was stimulated by elevated $CO_2$ levels at 20.3 and 22.6$^{\circ}C$. Leaf area and fresh weight were remarkedly increased by high $CO_2$ concentration at 22.6$^{\circ}C$. Dry weights of leaf, stem, root, and whole plant were increased as temperature increased at 611 ppm $CO_2$, but those values decreased at 22.6$^{\circ}C$ in 397 ppm $CO_2$ concentration. Elevated $CO_2$ increased plant growth by 1.5 times at 20.5$^{\circ}C$ and 22.6$^{\circ}C$. C/N ratio increased with increasing temperature under elevated $CO_2$ levels.

고추(Capsicum annuum L. cv. Soonjung)의 plug tray육묘시 $CO_2$와 온도처리가 우량묘생산에 미치는 효과를 조사 분석하였다. 초장은 611 ppm의 $CO_2$를 처리하였을 경우에 20.3$^{\circ}C$와 22.6$^{\circ}C$의 고온하에서 촉진되었으나, 15.6$^{\circ}C$의 저온하에서는 촉진효과가 없었다. 엽면적과 생체중은 22.6$^{\circ}C$의 고온에서 고농도의 $CO_2$를 처리하였을 경우에 현저히 증가하였다. 잎, 줄기, 뿌리 및 총건물중은 611 ppm의 $CO_2$를 처리하였을 경우에 온도가 상승할수록 증가하였으나, 397ppm의 $CO_2$농도에서는 22.6$^{\circ}C$의 고온에서 건물중이 감소하였다. 611 ppm의 $CO_2$처리에 의한 건물중의 증가는 20.3$^{\circ}C$ 이상의 고온과 고농도의 $CO_2$에서 약 1.5배 증가하였다. C/N율은 611 ppm의 $CO_2$ 처리가 397 ppm의 $CO_2$ 농도에서보다 높고, 온도의 상승과 함께 증가하였다.

Keywords

References

  1. Arp, W.J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated CO$_2$. Plant, Cell and Environ. 14:869-875 https://doi.org/10.1111/j.1365-3040.1991.tb01450.x
  2. Bazzaz, F.A. 1990. The response of natural eCOSyS-terns to the rising global $CO_2$ levels. Ann. Rev. Ecol. Syst. 21:167-196 https://doi.org/10.1146/annurev.es.21.110190.001123
  3. Bloom, A.J., F.S. Chapin III, and H.A. Mooney. 1985. Resource limitation in plants: An economy analogy. Annu. Rev. Ecol. Syst. 16:363-392 https://doi.org/10.1146/annurev.es.16.110185.002051
  4. Bowes, G. 1991. Growth at elevated CO$_2$: Photosyn-thetic responses mediated through Rubisco. Plant, Cell and Environ. 14:795-806 https://doi.org/10.1111/j.1365-3040.1991.tb01443.x
  5. Bowes, G. 1993. Pacing the inevitable: plants and increasing atmospheric $CO_2$ Annu. Rev. Plant Phys-iol. Plant Mol. Biol. 44:309-332 https://doi.org/10.1146/annurev.pp.44.060193.001521
  6. Chen K, G. Hu, N. Keutgenl, M.J.J. Janssens, and F. Lenz. 1999. Effects of NaCl salinity and $CO_2$ enrich-merit on pepmo(So1atium muricatum Ait.). I. Growth and yield. Scientia Horticulturae 81(1):25-41
  7. Chen, K. and F. Lenz. 1997. Responses of strawberry to doubled $CO_2$ concentration and phosphorus defi-ciency II. Gas exchange and water consumption. Gar-tenbauwissenschaft 62:90-96
  8. Conway, T.J., P.P. Tans, and L.S. Waterman. 1994. Atmospheric $CO_2$ records from sites in the NOAA/ CMDL air sampling network, In Boden, T.A.. Kaiser. D.R, Sepanski, RJ,, Stoss, F.W. (Eds.), Trends 93. A Compendium of Data on Global Change, ORNL/ CDIAC-65. Carbon Dioxide Information Analysis Cen-tre, Oak Ridge NationaI Laboratury, Oak Ridge, Ten-nessee, USA, pp. 41-119
  9. Drake, B.G. and O.W. LeadIey. 1991. Canopy Photo-synthesis of crops and native plant communities exposedto long-term elevated $CO_2$ Plant Cell Environ. 14:853-86 https://doi.org/10.1111/j.1365-3040.1991.tb01448.x
  10. Horie, T, H. Nakagawa, J. Nakano, K. Hamotani, and H.Y. Kim. 1995. Temperature gradient chamber for research on global environment change. III. A system designed for rice in Kyoto. Japan. Plant Cell Environ. 18:1055-1063 https://doi.org/10.1111/j.1365-3040.1995.tb00617.x
  11. Hunt, R., D.W. Hand, M.A. Hannah, and A.M. Neal. 1995. Temporal and nutritional influences on the response to elevated $CO_2$ in selected British grasses. Ann. Bot. 75:207-216 https://doi.org/10.1006/anbo.1995.1014
  12. IPCC. 1990. Intergovernmental panel on climate change, working group 1. Climate change, The IPCC Scien-tific Assessment. In: Houghton, J.T., Ephraums, J.J. (Eds.), Cambridge University Press, Cambridge
  13. Kimball, B.A. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior Obser-vations. Agron. J. 75:779-778 https://doi.org/10.2134/agronj1983.00021962007500050014x
  14. Manderscheid, R. and H.J. Weigel. 1995. Do increas-ing atmospheric $CO_2$ concentrations contribute to yield increases of German crops? J. Agron. Crop Sci 175:73-82 https://doi.org/10.1111/j.1439-037X.1995.tb01132.x
  15. Poorter, H. 1998. Do slow-growing species and nutri-ent-stressed plants respond relatively strongly to ele-vated $CO_2$. Global Change Biol. 4:693-697 https://doi.org/10.1046/j.1365-2486.1998.00177.x
  16. Rawson, H.M. 1992. Plant responses to temperature under conditions of elevated $CO_2$. Aust. J. Bot. 40:473-490 https://doi.org/10.1071/BT9920473
  17. Reddy, K.R., H.F. Hodges, and J.M. McKinion. 1993. A temperature model for cotton phenology. Biotronics 22:47-59
  18. Reddy, K.R., H.F. Hodges, and J.M. Mckinion. 1995. Carbon dioxide and temperature effects on pigma Cot-ton growth. Aghculture, Ecosystems and Environment 54:17-29 https://doi.org/10.1016/0167-8809(95)00593-H
  19. Reddya, K.R, R.R. Robanaa. Hairy F. Hodgesa, X.J. Liua, and James M. McKinionb. 1998. Interactions of $CO_2$ enrichment and temperature on cotton growth and leaf characteristics. Environmental and ExperimentaI Botany 39(2):117-129 https://doi.org/10.1016/S0098-8472(97)00028-2
  20. Schlesinger, M.Z. and J.F.B. Mitchell. 1985. Model projections of equilibrium climatic response to increased Carbon Dioxide. In: McCaracken, M.C. and Luther, F.M., Editors, 1985. Projecting climatic effects of increasing Carbon Dioxide. DOE-0237, National TeCh-nical Information Service, Springfield, VA