DOI QR코드

DOI QR Code

Effects of Elevated Temperature after the Booting Stage on Physiological Characteristics and Grain Development in Wheat

밀에서 출수 후 잎의 생리적 특성 및 종실 생장에 대한 수잉기 이후 고온의 효과

  • Song, Ki Eun (Department of Applied Biological Science, Applied Biology (BK Plus), Gyeongsang National University) ;
  • Choi, Jae Eun (Department of Agronomy, Gyeongsang National University) ;
  • Jung, Jae Gyeong (Department of Agronomy, Gyeongsang National University) ;
  • Ko, Jong Han (Applied Plant Science, Chonnam National University) ;
  • Lee, Kyung Do (Department of Agricultural Enviroment, National Institute of Agricultural Sciences) ;
  • Shim, Sang-In (Institute of Life Sciences, Gyeongsang National University)
  • 송기은 (경상국립대학교 응용생명과학부 BK21+ 프로그램) ;
  • 최재은 (경상국립대학교 농학과) ;
  • 정재경 (경상국립대학교 농학과) ;
  • 고종한 (전남대학교 응용식물학과) ;
  • 이경도 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 심상인 (경상국립대학교 생명과학연구원)
  • Received : 2021.09.14
  • Accepted : 2021.10.01
  • Published : 2021.12.01

Abstract

In recent years, global warming has led to frequent climate change-related problems, and elevated temperatures, among adverse climatic factors, represent a critical problem negatively affecting crop growth and yield. In this context, the present study examined the physiological traits of wheat plants grown under high temperatures. Specifically, the effects of elevated temperatures on seed development after heading were evaluated, and the vegetation indices of different organs were assessed using hyperspectral analysis. Among physiological traits, leaf greenness and OJIP parameters were higher in the high-temperature treatment than in the control treatment. Similarly, the leaf photosynthetic rate during seed development was higher in the high-temperature treatment than in the control treatment. Moreover, temperature by organ was higher in the high-temperature treatment than in the control treatment; consequently, the leaf transpiration rate and stomatal conductance were higher in the control treatment than in the high-temperature treatment. On all measuring dates, the weight of spikes and seeds corresponding to the sink organs was greater in the high-temperature treatment than in the control treatment. Additionally, the seed growth rate was higher in the high-temperature treatment than in the control treatment 14 days after heading, which may be attributed to the higher redistribution of photosynthates at the early stage of seed development in the former. In hyperspectral analysis, the vegetation indices related to leaf chlorophyll content and nitrogen state were higher in the high-temperature treatment than in the control treatment after heading. Our results suggest that elevated temperatures after the booting stage positively affect wheat growth and yield.

고온처리가 동화산물의 공급부위인 잎과 수용부위인 종실에 미치는 영향과 그에 따른 기관별 초분광 분석에 의한 식생지수들을 비교해 보았다. 1. 출수 후부터 생리적 성숙기까지 지엽과 최상위엽의 엽녹색도에선 고온처리구가 무처리구보다 높은 값으로 유지되었고, 광합성 성능 지수 및 OJIP-derived parameter에서도 고온처리구 잎이 무처리구 잎보다 높았다. 본 연구 결과, 수잉기 후 고온처리는 잎의 노화를 지연시켰고, 광계II의 능력을 증가시켰다. 지엽과 최상위제2엽의 광합성률은 고온처리구가 무처리구에 비해 저하가 늦게 시작되었다. 증산율과 기공전도도는 고온처리구 잎이 무처리구 잎에 비해 낮았다. 2. 출수 초기에 동화산물 공급부위인 지상부와 이삭축, 영의 건물중은 고온처리구가 무처리구에 비해 높았지만, 시간이 지남에 따라 고온처리구보다 무처리구에서 높았다. 싱크기관인 이삭과 종실의 무게는 고온처리구가 무처리구보다 높았고, 종실 생장률도 고온처리구가 무처리구보다 높았다. 3. 지엽과 최상위엽의 식생지수들 중 엽록소 함량과 잎의 질소 상태와 관련된 식생지수들은 시간이 지남에 따라 고온처리구가 무처리구보다 높아졌고, 광효율과 관련된 PRI은 출수 후 7일부터 무처리구보다 고온처리구에서 높아지기 시작했다. 출수 후 7일에 지상부 건물중과 수분함량, 이삭축 건물중 및 종실 수분함량도 같은 결과를 보였다.

Keywords

Acknowledgement

이 논문은 농촌진흥청 국립농업과학원 공동연구사업(과제번호:PJ013841032021)의 지원을 받았으며, 이에 감사드립니다.

References

  1. Burke, J. J. 2001. Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Plant. 112 : 167-170. https://doi.org/10.1034/j.1399-3054.2001.1120203.x
  2. Dias, A. S. and F. C. Lidon. 2009. Evaluation of grain filling rate and duration in bread and durum wheat under heat stress after anthesis. J. Agron. Crop Sci. 195 : 137-147. https://doi.org/10.1111/j.1439-037X.2008.00347.x
  3. Drozdov, S. N., A. F. Titov, N. I. Balagurova, and S. P. Kritenko. 1984. The effect of temperature on cold and heat resistance of growing plants: II. Cold resistant species. J. Exp. Bot. 35 : 1603-1608. https://doi.org/10.1093/jxb/35.11.1603
  4. Farooq, M., H. Bramley, J. A. Palta, and K. H. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30 : 491-507. https://doi.org/10.1080/07352689.2011.615687
  5. Ferris, R., R. H. Ellis, T. R. Wheeler, and P. Hadley. 1998. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 82 : 631-639. https://doi.org/10.1006/anbo.1998.0740
  6. Fu, J. D., Y. F. Yan, and B. W. Lee. 2009. Physiological characteristics of a functional stay-green rice "SNU-SG1" during grain-filling period. J. Crop Sci. Biotechnol. 12 : 47-52. https://doi.org/10.1007/s12892-009-0078-8
  7. Hunt, L. A., G. V. D. Poorten, and S. Pararajasingham. 1991. Postanthesis temperature effects on duration and rate of grain filling in some winter and spring wheats. Can. J. Plant Sci. 71 : 609-617. https://doi.org/10.4141/cjps91-092
  8. Jurkoniene, S., J. Jankauskiene, R. Mockeviciute, V. Gaveliene, E. Jankovska-Bortkevic, I. Sergiev, D. Todorova, N. Anisimoviene. 2021. Elevated temperature iInduced adaptive responses of two lupine species at early seedling phase. Plants. 10 : 1091. https://doi.org/10.3390/plants10061091
  9. Khan, A., M. Ahmad, M. Ahmed, and H. M. Iftikhar. 2020. Rising atmospheric temperature impact on wheat and thermotolerance strategies. Plants 10 : 43. https://doi.org/10.3390/plants10010043
  10. Kim, J., J. Shon, C. K. Lee, W. Yang, Y. Yoon, W. H. Yang, Y. G. Kim, and B. W. Lee. 2011. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Res. 122 : 207-213. https://doi.org/10.1016/j.fcr.2011.03.014
  11. Marcos-Barbero, E. L., P. Perez, R. Martinez-Carrasco, J. B. Arellano, and R. Morcuende. 2021. Screening for higher grain yield and biomass among sixty bread wheat genotypes grown under elevated CO2 and high-temperature conditions. Plants 10 : 1596. https://doi.org/10.3390/plants10081596
  12. McDonald, G. K. and G. M. Paulsen. 1997. High temperature effects on photosynthesis and water relations of grain legumes. Plant and Soil. 196 : 47-58. https://doi.org/10.1023/A:1004249200050
  13. Murchie, E. H., Y. Z. Chen, S. Hubbart, S. Peng, and P. Horton. 1999. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiol. 119 : 553-564. https://doi.org/10.1104/pp.119.2.553
  14. Park, 2011. Leaf Temperature characteristics being affected by light regimes. J. Environ. Sci. Int. 20 : 1599-1605. https://doi.org/10.5322/JES.2011.20.12.1599
  15. Park, J. H. and B. W. Lee. 2003. Genotypic difference in leaf senescence during grain filling and its relation to grain yield of rice. Korean J. Crop Sci. 48 : 224-231.
  16. Prasad, P. V., K. J. Boote, and L. H. Allen Jr. 2006. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agr. Forest Metorol. 139 : 237-251. https://doi.org/10.1016/j.agrformet.2006.07.003
  17. Pradhan, G. P. and P. V. Prasad. 2015. Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One. 10 : e0116620. https://doi.org/10.1371/journal.pone.0116620
  18. RDA. 2011. Standard textbook for agronomy; Wheat. RDA, Jeon-ju, Korea.
  19. Saini, H. S., M. Sedgley, and D. Aspinall. 1983. Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Funct. Plant Biol. 10 : 137-144. https://doi.org/10.1071/pp9830137
  20. Smika, D. E. and R. W. Shawcroft. 1980. Preliminary study using a wind tunnel to determine the effect of hot wind on a wheat crop. Field Crops Res. 3 : 129-135. https://doi.org/10.1016/0378-4290(80)90018-0
  21. Snider, J. L., N. Thangthong, C. Pilon, G. Virk, and V. Tishchenko. 2018. OJIP-fluorescence parameters as rapid indicators of cotton (Gossypium hirsutum L.) seedling vigor under contrasting growth temperature regimes. Plant Physiol. Biochem. 132 : 249-257. https://doi.org/10.1016/j.plaphy.2018.09.015
  22. Sofield, I., L. T. Evans, M. G. Cook, and I. F. Wardlaw. 1977. Factors influencing the rate and duration of grain filling in wheat. Aust. J. Plant Physiol. 4 : 785-797. https://doi.org/10.1071/PP9770785
  23. Strasser, R. J., A. Srivastava, and M. Tsimilli-Michael. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing photosynthesis: mechanisms, regulation and adaptation pp. 445-483.
  24. Wardlaw, I. F. and L. Moncur. 1995. The response of wheat to high temperature following anthesis. I. The rate and duration of kernel filling. Funct. Plant Biol. 22 : 391-397. https://doi.org/10.1071/pp9950391
  25. Zhang, C. X., B. H. Feng, T. T. Chen, W. M. Fu, H. B. Li, G. Y. Li, Q. Y. Jin, L. X. Tao, and G. F. Fu. 2018. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation. Environ. Exp. Bot. 155 : 718-733. https://doi.org/10.1016/j.envexpbot.2018.08.021
  26. Zhang, X., B. Wollenweber, D. Jiang, F. Liu, and J. Zhao. 2008. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J. Exp. Bot. 59 : 839-848. https://doi.org/10.1093/jxb/erm364