• Title/Summary/Keyword: leadframe

Search Result 67, Processing Time 0.028 seconds

Cost-effective Power Module Package using Leadframe and Ceramic substrate

  • Jeon, O-S;Jeun, G-Y;Park, S-Y;Lee, K-H;Kim, B-G
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.9-25
    • /
    • 2001
  • Fairchild has been developing a new class IPM called SPM consisting of dramatic Packaging technology to achieve the lowest cost rind better performance for low power home appliances and industrial AC drive applications. The first Fairchild SPM development with IGBT 600V/15A for washing machine application started in 1999 and was completed successfully. Fairchild SPMs are going to be the best solution for low power inverter-driven AC drive system after 2001. The new SPM Packages like SPM ∥ and SPIM for the next generation IPM with the highest competitiveness (cost & performance) shall be continuouslly developed.

  • PDF

Solder Joint Reliability of Bottom-leaded Plastic Package (BLP 패키지의 솔더 조인트의 신뢰성 연구)

  • 박주혁
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.79-84
    • /
    • 2002
  • The bottom-leaded plastic(BLP) packages have attracted substantial attention since its appearance in the electronic industry. Since the solder materials have relatively low creep resistance and are susceptible to low cycle fatigue, the life of the solder joints under the thermal loading is a critical issue for the reliability The represent study established a finite element model for the analysis of the solder joint reliability under thermal cyclic loading. An elasto-plastic constitutive relation was adopted for solder materials in the modeling and analysis. A 28-pin BLP assembly is modeled to investigate the effects of various epoxy molding compound, leadframe materials on solder joint reliability. The fatigue life of solder joint is estimated by the modified Coffin-Hanson equation. The two coefficients in the equation are also determined. A new design for lead is also evaluated by using finite element analysis. Parametric studies have been conducted to investigate the dependence of solder joint fatigue life on various package materials.

  • PDF

Introduction of Routable Molded Lead Frame and its Application (RtMLF(Routable Molded Lead Frame) 패키지 소개 및 응용)

  • Kim, ByongJin;Bang, Wonbae;Kim, GiJung;Jung, JiYoung;Yoon, JuHoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.41-45
    • /
    • 2015
  • RtMLF (Routable Molded Lead Frame) based on molded substrate has been developed to maximize advantages of both leadframe product which has high thermal and electrical performance and laminate product which accommodates more I/O count and keeps fan-in/fan-out design flexibility. Due to its structural features, RtMLF provided excellent thermal and electrical performance which was confirmed with simulation. The RtMLF samples were manufactured and its reliability analysis was done to evaluate the opportunities of the production and application.

Effect of High Filler Loading on the Reliability of Epoxy Holding Compound for Microelectronic Packaging (반도체 패키지 봉지재용 에폭시 수지 조성물의 신뢰특성에 미치는 실리카 고충전 영향)

  • 정호용;문경식;최경세
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.51-63
    • /
    • 1999
  • The effects of high filler loading technique on the reliability of epoxy molding compound (EMC) as a microelectronic encapsulant was investigated. The method of high filler loading was established by the improvement of maximum packing fraction using the simplified packing model proposed by Ouchiyama, et al. With the maximum packing fraction of filler, the viscosity of EMC wart lowered and the flowability was improved. As the amount of filler in EMC increased, several properties such as internal stress and moisture absorption were improved. However, the adhesive strength with the alloy 42 leadframe decreased when the filler content was beyond the critical value. It was found that the appropriate content of filler was important to improve the reilability of EMC, and the optimum filler combination should be selected to obtain high reliable EMC filled with high volume fraction of filler.

  • PDF

Development of Electrode Guide of Super-drill EDM and Electrical Discharge Machining of Small Hole for High Precision Semiconductor Die (초정밀 반도체 금형 제작을 위한 슈퍼드릴 방전가공기 전극가이드 개발과 미세홀 방전가공)

  • Park, Chan-Hae;Kim, Jong-Up;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.32-38
    • /
    • 2005
  • Electrical discharge machining is the method of using thermal energy by electrical discharge. Generally, if the material of workpiece has conductivity even though very hard materials and complicated shape which are difficult to cut such as quenching steel, cemented carbide, diamond and conductive ceramics, the EDM process is favorable one of possible machining processes. But, the process is necessarily required of finish cut and heat treatment because of slow cutting speed, no mirror surface, brittleness and crack due to the residual stress for manufactured goods. In this experimental thesis, the super EDM drilling was developed for high precision semiconductor die steel and for minimization of leadframe width. It was possible to development of EDM drilling machine for high precision semiconductor die with the electrode guide and its modelling and stress analysis. The development of electrode with the copper pipe type was conducted to drill the hole from the diameter of 0.1mm to 3.0mm with the error of from 0.02mm to 0.12mm. From the SEM and EDX analysis, the entrance of the EDM drill was found the resolidification of not only the component of tungsten but also the component of copper.

  • PDF

The Influence of Leadframe Oxidation on the Cu/EMC Interface Adhesion (리드프레임의 산화가 Cu/EMC 계면 접착력에 미치는 영향)

  • Jo, Sun-Jin;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.781-788
    • /
    • 1997
  • Cu/EMC 계면 접착력에 미치는 산화의 규명하기 위해 리드프레임의 저온 산화에 대하여 조사하였다. 이전의 보고와 달리, 저온에서도 Cu$_{2}$O위에 CuO산화물이 형성되어 Cu/Cu$_{2}$O(NiO)/Cu(NiO)/air의 산화층 구조를 나타내었다. Cu/EMC 계면 접착력은 산화가 진행됨에 따라 산화 초기에 급격히 증가하다 최대값에 이르고, 이후의 계속적인 산화로 감소하는 양상을 보였다. 접착력은 산화 온도나 리드프레임의 종류보다 산화막의 두께에 밀접한 상관 관계를 나타내었다. 최대 계면 접착력이 얻어지는 산화막의 두께는 리드프레임의 종류보다 산화막의 두께에 밀접한 상관 관계를 나타내었다. 최대 계면 접착력이 얻어지는 산화막의 두께는 리드프레임의 종류와 무관하게 대략 20nm 와 30nm 사이에 존재하였다. 산화 초기의 접착력 증가는 산화로 인한 EMC에 대한 젖음성의 증가와 기계적 고착 효과의 증가에 기인하였다. 리드프레임과 EMC의 파괴 표면에 대한 AES, XPS 분석으로 부터, 산화막의 두께가 얇을 때에는 Cu$_{2}$O//CuO의 계면 파괴 + EMC 자체 파괴가 복합적으로 발생함을 알 수 있었다. 반면에 과도한 산화로 낮을 접착력을 나타내는 시편은 Cu/Cu$_{2}$/O 계면의 파괴를 나타냈다.

  • PDF

Effects of Added Cr Element on the Tensile Strength and Electrical Conductivity of Cu-Fe Based Alloys (Cu-Fe계 합금의 강도 및 전기전도도에 미치는 Cr 원소첨가의 영향)

  • Kim, Dae-Hyun;Lee, Kwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.60-64
    • /
    • 2010
  • This study looked at high performance copper-based alloys as LED lead frame materials with higher electrical-conductivity and the maintenance of superior tensile strength. This study investigated the effects on the tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases when Cr was added in Cu-Fe alloy in order to satisfy characteristics for LED Lead Frame material. Strips of the alloys were produced by casting and then properly treated to achieve a thickness of 0.25 mm by hot-rolling, scalping, and cold-rolling; mechanical properties such as tensile strength, hardness and electrical-conductivity were determined and compared. To determine precipitates in alloy that affect hardness and electrical-conductivity, electron microscope testing was also performed. Cr showed the effect of precipitation hardened with a $Cr_3Si$ precipitation phase. As a result of this experiment, appropriate aging temperature and time have been determined and we have developed a copper-based alloy with high tensile strength and electrical-conductivity. This alloy has the possibility for use as a substitution material for the LED Lead Frame of Cu alloy.

Effects of Alloying Elements on the Tensile Strength and Electrical Conductivity of Cu-Fe-P Based Alloys (Cu-Fe-P계 합금의 강도 및 전기전도도에 미치는 첨가 원소의 영향)

  • Kim, Dae-Hyun;Lee, Kwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, the effect of Sn and Mg on microstructure and mechanical properties of Cu-Fe-P alloy were investigated by using scanning electron microscope, transmission electron microscope, tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases in order to satisfy characteristic for lead frame material. It was observed that Cu-0.14wt%Fe-0.03wt%P-0.05wt%Si-0.1wt%Zn with Sn and Mg indicates increasing tensile strength compare with PMC90 since Sn restrained the growth of the Fe-P precipitation phase on the matrix. However, the electrical conductivity was decreased by adding addition of Sn and Mg because Sn was dispersed on the matrix and restrained the growth of the Fe-P precipitation. The size of 100 nm $Mg_3P_2$ precipitation phase was observed having lattice parameter $a:12.01{\AA}$ such that [111] zone axis. According to the results of the study, the tensile strength and the electrical conductivity satisfied the requirements of lead frame; so, there is the possibility of application as a substitution material for lead frame of Cu alloy.

Comparison of the Characteristics of Cu-Sn and Ni Pre-Plated Frames Prepared by Electro-Plating (전기도금된 Cu-Sn과 Ni preplated frame의 특성 비교)

  • Lee, D.H.;Jang, T.S.;Hong, S.S.;Lee, J.W.;Yang, H.W.;Hahn, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.276-281
    • /
    • 2006
  • In order to improve the performance of PPFs (Pre-Plated Frames), a PPF that employed a Cu-Sn alloy instead of conventionally used Ni was developed and then its properties were investigated. It was found that the electoplated Cu-Sn alloy layer was a mixture of uniformly distributed fine crystallites, resulting In better wettability and crack resistance than those of Ni PPF. Moreover, as in Cu/Ni/Pd/Au PPF, migration of copper atoms from the base metal to the top of the Cu/Cu-Sn/Pd/Au PPF surface was not found although the Cu-Sn layer itself contained considerable amount of copper. It was expected that, by using the newly developed Cu-Sn PPF, any possible heat generation and signal interrupt caused by an external electro-magnetic field could be reduced because the Cu-Sn layer was paramagnetic, i.e., nonmagnetic.

The Application of Electropolishing for Removing Burrs and Residual Stress of Stamping Leadframe (스탬핑 리드프레임의 버와 잔류응력 제거를 위한 전해연마의 적용)

  • 신영의;김헌희;김경섭;코조후지모토;김종민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.19-24
    • /
    • 2001
  • The lead frame, which is principal material used in semiconductor packaging, is required to be microscopic in leads and pitches to cope with miniaturization, thin film, large scale integrated. In addition, it is indispensable to eliminate residual stress and burrs occurring at manufacturing lead frames This thesis applied electrolytic abrasion in order to remove burrs and residual stress created during the stamp process. Electrolytic abrasion removed the burrs on the surface of lead frame. Removal of residual stress highly depends on the types of electrolyte solution. In case of perchloric system, electrolytic abrasion removed 23% of residual stress. Through removal of burrs and reducing residual stress, the reliability of lead frame was substantially improved.

  • PDF