• Title/Summary/Keyword: layer-wise theory

Search Result 24, Processing Time 0.027 seconds

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory

  • Mohammadi, B.;Hosseini-Toudeshky, H.;Sadr-Lahidjani, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.657-674
    • /
    • 2009
  • In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.

Layer-wise numerical model for laminated glass plates with viscoelastic interlayer

  • Zemanova, Alena;Zeman, Jan;Janda, Tomas;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.369-380
    • /
    • 2018
  • In this paper, a multi-layered finite element model for laminated glass plates is introduced. A layer-wise theory is applied to the analysis of laminated glass due to the combination of stiff and soft layers; the independent layers are connected via Lagrange multipliers. The von $K{\acute{a}}rm{\acute{a}}n$ large deflection plate theory and the constant Poisson ratio for constitutive equations are assumed to capture the possible effects of geometric nonlinearity and the time/temperature-dependent response of the plastic foil. The linear viscoelastic behavior of a polymer foil is included by the generalized Maxwell model. The proposed layer-wise model was implemented into the MATLAB code and verified against detailed three-dimensional models in ADINA solver using different hexahedral finite elements. The effects of temperature, load duration, and creep/relaxation are demonstrated by examples.

Transverse stress determination of composite plates

  • Phoenix, S.S.;Sharma, M.;Satsangi, S.K.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.457-475
    • /
    • 2007
  • Analysis of transverse stresses at layer interfaces in a composite laminate has always been a challenging task. Composite structures possess highly irregular material properties at layer interfaces, which cause high shear stresses. Classical Plate Theory and First Order Shear Deformation Theory (FSDT) use post computing to calculate transverse stresses. This paper presents Reissner Mixed Variational Theorem (RMVT) based finite element model to carry out layer-wise analysis of composite laminates. Selective integration scheme has been used. The formulation has been validated by solving numerical examples and comparing the results with those published in the literature.

Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.275-290
    • /
    • 2018
  • The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.

Damped Vibrations of Axially-Stressed Laminated Beams using Zig-Zag Finite Element (축방향 하중을 받는 점탄성물질이 심어진 적층보의 지그재그요소를 이용한 진동해석)

  • 이덕규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.1-4
    • /
    • 2001
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss actors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effect of the axial tension and compression load on the frequencies and loss factors is discussed.

  • PDF

Vibration Analysis of Axially-Stressed Composite Beam with Viscoelastic Layer (점탄성층을 갖는 복합재보의 축하중 작용시 진동해석)

  • 이덕규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.33-38
    • /
    • 2002
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss factors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effects of the axial tension and compression load on the frequencies and loss factors are discussed.

  • PDF

Vibration and buckling of laminated beams by a multi-layer finite element model

  • Kahya, Volkan;Turan, Muhittin
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.415-426
    • /
    • 2018
  • This paper presents a multi-layer finite element for buckling and free vibration analyses of laminated beams based on a higher-order layer-wise theory. An N-layer beam element with (9N + 7) degrees-of-freedom is proposed for analyses. Delamination and slip between the layers are not allowed. Element matrices for the single- and multi-layer beam elements are derived by Lagrange's equations. Buckling loads and natural frequencies are calculated for different end conditions and lamina stacking. Comparisons are made to show the accuracy of proposed element.

Vibration and Damping Analysis of Cross-ply Plate Strip Including Layer-wise In-plane Displacements (면내 변위의 변화를 고려한 Cross-ply 적층판의 진동 및 감쇠해석)

  • Koo, Kyo-Nam;Lee, in
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.305-315
    • /
    • 1992
  • In order to investigate the effects of layer-wise in-plane displacements on vibration and damping characteristics of composite laminated plates, the finite element method based on the generalized laminated plate theory(GLPT) has been formulated. Specific damping capacity of each mode was obtained by modal strain energy method. To see the effect of transverse shear on deformation, the strain energy of stress components was computed. The accuracy of this study was examined for the cylindrical bending vibration of cross-ply plate strip. The results were very accurate compared with 3-D solutions. The numerical results show that through-thickness variation of in-plane displacements has not so much influence on the natural frequency, but has a great influence on the damping of composite plates, especially on the damping of thick composite plates since the damping is affected by local behavior while the natural frequency is affected by global behavior.

  • PDF

Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation

  • Kumar, Puneet;Srinivas, J.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.569-578
    • /
    • 2018
  • This paper aims to investigate the transient vibration behavior of functionally graded carbon nanotube (FG-CNT) reinforced nanocomposite plate resting on Pasternak foundation under pulse excitation. The plate is considered to be composed of matrix material and multi-walled carbon nanotubes (MWCNTs) with distribution as per the functional grading concept. The functionally graded distribution patterns in nanocomposite plate are explained more appropriately with the layer-wise variation of carbon nanotubes weight fraction in the thickness coordinate. The layers are stacked up in such a way that it yields uniform and three other types of distribution patterns. The effective material properties of each layer in nanocomposite plate are obtained by modified Halpin-Tsai model and rule of mixtures. The governing equations of an illustrative case of simply-supported nanocomposite plate resting on the Pasternak foundation are derived from third order shear deformation theory and Navier's solution technique. A converge transient response of nanocompiste plate under uniformly distributed load with triangular pulse is obtained by varying number of layer in thickness direction. The validity and accuracy of the present model is also checked by comparing the results with those available in literature for isotropic case. Then, numerical examples are presented to highlight the effects of distribution patterns, foundation stiffness, carbon nanotube parameters and plate aspect ratio on the central deflection response. The results are extended with the consideration of proportional damping in the system and found that nanocomposite plate with distribution III have minimum settling time as compared to the other distributions.

지그재그 보요소를 이용한 응력해석 및 진동해석

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.149-159
    • /
    • 2004
  • Dynamic analysis of laminated beams with a embedded damping layer under tensional and compressive axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss factors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effects of the axial tensional and compressive load on the frequencies and loss factors are discussed.

  • PDF