Browse > Article
http://dx.doi.org/10.12989/sem.2018.65.3.275

Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates  

Ahmadi, Isa (Advanced Materials and Computational Mechanics Lab, Department of Mechanical Engineering, University of Zanjan)
Publication Information
Structural Engineering and Mechanics / v.65, no.3, 2018 , pp. 275-290 More about this Journal
Abstract
The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.
Keywords
thermal loading; hygroscopic loading; sandwich plate; out of plane stresses; layer-wise theory;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Pantano, A. and Averill, R.C. (2000), "A 3D zig-zag sublaminate model for analysis of thermal stresses in laminated composite and sandwich plate", J. Sandw. Struct. Mater., 2(3), 288-312.   DOI
2 Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56, 25-34.   DOI
3 Puppo, A.H. and Evensen, H.A. (1970), "Interlaminar Shear in laminated composites under generalized plane stress", J. Compos. Mater., 4, 204-220.   DOI
4 Singh, S.K. and Chakrabarti, A. (2017), "Hygrothermal analysis of laminated composites using $C^0$ FE model based on higher order zigzag theory", Steel Compos. Struct., 23(1), 41-51.   DOI
5 Tahani, M. and Nosier, A. (2003), "Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading", Compos. Struct., 60, 91-103.   DOI
6 Vaddadi, P., Nakamura, T. and Singh R.P. (2003), "Transient hygrothermal stresses in fiber reinforced composites: A heterogeneous characterization approach", Compos. Part A: Appl. Sci. Manufact., 34(8), 719-730.   DOI
7 Wang, Y.R. and Chou, T.W. (1989), "Three-dimensional transient interlaminar thermal stresses in angle-ply composites", J. Appl. Mech., 56(3), 601-608.   DOI
8 Wang, A.S.D. and Crossman, F.W. (1977), "Edge effects on thermally induced stresses in composite laminates", J. Compos. Mater., 11, 300-312.   DOI
9 Wang, S.S. and Choi, I. (1982), "Boundary-layer hygroscopic stresses in angle-ply composite laminates", AIAA J., 20(11), 1592-1598.   DOI
10 Yin, W.L. (1994), "Simple solution of the free-edge stresses in composite laminates under thermal and mechanical loads", J. Compos. Mater., 28(6), 573-386.   DOI
11 Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49, 65-75.   DOI
12 Zenkour, A.M. (2012), "Hygrothermal analysis of exponentially graded rectangular plates", J. Mech. Mater. Struct., 7(7), 687-700.   DOI
13 Zenkour, A.M., Mashat, D.S. and Alghanmi, R.A. (2014), "Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory", J. Mech. Mater. Des., 10(2), 213-226.   DOI
14 Zhu, S.Q., Chen, X. and Wang, X. (2007), "Response of dynamic interlaminar stresses in laminated plates under free vibration and thermal load", Struct. Eng. Mech., 25(6), 753-765.   DOI
15 Herakovich, C.T. (1976), "On thermal edge effects in composite laminates", J. Mech. Sci., 18(3), 129-134.   DOI
16 Huang, B. and Kim, H.S. (2015), "Interlaminar stress analysis of piezo-bonded composite laminates using the extended Kantorovich method", J. Mech. Sci., 90, 16-24.   DOI
17 Kim, H.S., Cho, M., Lee, J., Deheeger, A., Grediac, M. and Mathias, J.D. (2010), "Three-dimensional stress analysis of a composite patch using stress functions", J. Mech. Sci., 52, 1646-1659.   DOI
18 Kim, T. and Atluri, S.N. (1995), "Analysis of edge stresses in composite laminates under combined thermo-mechanical loading, using a complementary energy approach", Comput. Mech., 16, 83-97.   DOI
19 Lee, S.S. and Kim, B.S. (1997), "Boundary element analysis of singular thermal stresses in a unidirectional laminate", Struct. Eng. Mech., 5(6), 705-713.   DOI
20 Ahmadi I. (2016), "Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation", Struct. Eng. Mech., 57(4), 733-762.   DOI
21 Lekhnitskii, S.G. (1981), Theory of Elasticity of an Anisotropic Body, Mir Publisher, Moscow, 104.
22 Lo, S.H., Zhen, W.U., Cheung, Y.K. and Wanji, C. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher order theory", Compos. Struct., 92, 633-646.   DOI
23 Lu, X. and Liu, D. (1992), "An interlaminar shear stress continuity theory for both thin and thick composite laminates", J. Appl. Mech., 59(3), 502-509.   DOI
24 Matsunaga, H. (2004), "A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177.   DOI
25 Ahmadi, I. (2017), "A Galerkin layerwise Formulation for three-dimensional stress analysis in long sandwich plates", Steel Compos. Struct., 24(5), 523-536.   DOI
26 Ahmadi I. and Aghdam, M.M. (2010), "A generalized plane strain meshless local Petrov-Galerkin method for the micromechanics of thermomechanical loading of composites", J. Mech. Mater. Struct., 5(4), 549-566.   DOI
27 Ahmadi I. and Aghdam, M.M. (2010), "Analysis of micro-stresses in the SiC/Ti metal matrix composite using a truly local meshless method", J. Mech. Eng. Sci., 224(8), 1567-1577.   DOI
28 Ahmadi, I. (2016), "Edge stresses analysis in laminated thick sandwich cylinder subjected to distributed hygrothermal loading", J. Sandw. Struct. Mater., 1099636216657681.
29 Ahmadi, I. and Najafi, M. (2016), Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells. Steel Compos. Struct., 22(5), 1193-1214.   DOI
30 Mittelstedt, C. and Becker, W. (2004), "Interlaminar stress concentrations in layered structures-part I: A selective literature survey on the free-edge effect since 1967", J. Compos. Mater., 38, 1037-1062.   DOI
31 Morton, S.K. and Webber, J.P.H. (1993), "Interlaminar failure due to mechanical and thermal stresses at the free edges of laminated plates", Compos. Sci. Technol., 47(1), 1-13.   DOI
32 Morton, S.K. and Webber, J.P.H. (1993), "An analytical solution for the thermal stresses at the free-edges of laminated plates", Compos. Sci. Technol., 46, 175-185.   DOI
33 Murugesan, N. and Rajamohan, V. (2015), "Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading", Steel Compos. Struct., 18(3), 583-601.   DOI
34 Nath, J.K. and Kapuria, S. (2013), "Global-local and zigzag-local theories for direct transverse shear stress computation in piezolaminated plates under thermal loading", J. Mech. Sci., 75, 158-169.   DOI
35 Benkhedda, A., Tounsi, A. and Adda Bedia, E.A. (2008), "Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates", Compos. Struct., 82, 623-635.
36 Boukert, B., Benkhedda, A., Bedia, E.A. and Khodjet-Kesba, M. (2017), "Hygrothermomechanical behavior of thick composite plates using high order theory", Proc. Struct. Integr., 5, 115-122.   DOI
37 Brischetto, S. (2012), "Hygrothermal loading effects in bending analysis of multilayered composite plates", CMES-Comput. Model. Eng. Sci., 88(5), 367-418.
38 Murugesan, N. and Rajamohan, V. (2016), "Interlaminar shear stresses in laminated composite plates under thermal and mechanical loading", Mech. Adv. Mater. Struct., 23(5), 554-564.   DOI
39 Naidu, N.V.S. and Sinha, P.K. (2005), "Nonlinear finite element analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 69, 387-395.   DOI
40 Nguyen, T.D. and Nguyen, D.H. (2007), "Interlaminar stresses and delamination of composite laminates under extension and bending", Struct. Eng. Mech., 25(6).
41 Padhi, A. and Pandit, M.K. (2016), "Behaviour of sandwich laminates subjected to thermal loading using higher-order zig-zag theory", J. Sandw. Struct. Mater., 18(2), 174-199.   DOI
42 Pagano, N.J. (1974), "On the calculation of interlaminar normal stress in composite laminate", J. Compos. Mater., 8(1), 65-81.   DOI
43 Farley, G.L. and Herakovich, C.T. (1978), "Influence of two-dimensional hygrothermal gradients on interlaminar stresses near free edges", Adv. Compos. Mater.-Environ. Effects, 143-159.
44 Brischetto, S. (2013), "Hygrothermoelastic analysis of multilayered composite and sandwich shells", J. Sandw. Struct. Mater., 15(2), 168-202.   DOI
45 Cho, M. and Kim, H.S. (2000), "Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings", J. Sol. Struct., 37, 435-459.   DOI
46 Davi, G. and Milazzo, A. (1997), "Boundary element solution for free edge stresses in composite laminates", J. Appl. Mech., 64(4), 877-884.   DOI
47 Goodsell, J., Pagano, N.J., Kravchenko, O. and Pipes, R.B. (2013), "Interlaminar stresses in composite laminates subjected to anticlastic bending deformation", J. Appl. Mech., 80(4), 041020.   DOI
48 Goodsell, J. and Pipes, R.B. (2016), "Free-edge interlaminar stresses in angle-ply laminates: A family of analytic solutions", J. Appl. Mech., 83(5), 051010.   DOI
49 Hayashi, T. (1967), "Analytical study of interlaminar shear stresses in a laminated composite plate", Trans. Jap. Soc. Aeronaut. Eng. Space Sci., 10(17), 43-48.