Browse > Article
http://dx.doi.org/10.12989/sem.2009.33.6.657

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory  

Mohammadi, B. (School of Mechanical Engineering, Iran University of Science and Technology)
Hosseini-Toudeshky, H. (Aerospace Engineering Department & Center of Excellence in Computational Aerospace Engineering, Amirkabir University of Technology)
Sadr-Lahidjani, M.H. (Aerospace Engineering Department, Amirkabir University of Technology)
Publication Information
Structural Engineering and Mechanics / v.33, no.6, 2009 , pp. 657-674 More about this Journal
Abstract
In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.
Keywords
continuum damage mechanic; angle ply laminate; layer-wise; FEM;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Allix, O. and Ladeveze, P. (1989), "A damage prediction method for composite structures", Int. J. Numer. Meth. Eng., 27, 271-283   DOI
2 Allix, O. and Ladeveze, P. (1992), "Interlaminar interface modeling for the prediction of laminate delamination", Compos. Struct., 22, 235-242   DOI   ScienceOn
3 Barbero, E.J., Reddy, J.N. and Teply, J. (1990), "An accurate determination of stresses in thick laminates using a generalized plate theory", Int. J. Numer. Meth. Eng., 29, 1-14   DOI
4 Barbero, E. and De Vivo, L. (2001), "A constitutive model for elastic damage in fiber-reinforced PMC laminae", Int. J. Damage Mech., 10, 73-93   DOI   ScienceOn
5 Barbero, E. and Lonetti, P. (2002), "An inelastic damage model for fiber reinforced laminates", J. Compos. Mater., 36(8), 941-962   DOI   ScienceOn
6 Belytschko, T., Liu, W.K. and Moran, B. (2000), Nonlinear Finite Elements for Continua and Structures, John Wiley and Sons Ltd., New York
7 Chaboche, J.L. (1988a), "Continuum damage mechanics. Part I : General concepts", J. Appl. Mech., 55, 59-64   DOI
8 Chaboche, J.L. (1988b), "Continuum damage mechanics. Part II: Damage growth, crack initiation and crack growth", J. Appl. Mech., 55, 65-72   DOI
9 Cordebois, J.L. and Sirodoff, F. (1979), "Damage induced elastic anisotropy", Colloque Euromech 115, Villard de Lans, France
10 Herakovich, C.T. (1998), Mechanics of Fibrous Composites, John Wiley, New York
11 Kachanov, L.M. (1958), "On the creep fracture time", Zzu. Akad. Nauk. USSR Otd. Tekh., 8, 26-31 (in Russian)
12 Krajcinovic, D. (1983), "Constitutive equations for damaging materials", J. Appl. Mech., 50, 355-360   DOI
13 Krajcinovic, D. (1984), "Continuum damage mechanics", Appl. Me & Rev., 37(l), l-6
14 Ladeveze, P., Allix, O. and Daudeville, L. (1990), "Mesomodeling of damae for laminate composites: Application to delamination", In: Inelastic Deformation of Composite Materials, et G,J, Dvorak, 607-622
15 Lemaitre, J. (1986), "Local approach of fracture", Eng. Fract. Mech., 25(5/6), 523-537   DOI   ScienceOn
16 Ladeveze, P., Allix, O., Deu, J.F. and Leveque, D. (2000), "A mesomodel for localisation and damage computation in laminates", Comput. Meth. Appl. Mech. Eng., 183, 105-122   DOI   ScienceOn
17 Ladeveze, P. and Le Dantec, E. (1992), "Damage modeling of the elementary ply for laminated composites", Compos. Sci. Technol., 43(3), 257-267   DOI   ScienceOn
18 Lemaitre, J. (1985), "A continuous damage mechanics model for ductile fracture", J. Eng. Mater. Technol., 107, 83-89   DOI   ScienceOn
19 Lonetti, P., Zinno, R., Greco, F. and Barbero, E. (2003), "Interlaminar damage model for polymer matrix composites", J. Compos. Mater., 37(16), 1485-1504   DOI   ScienceOn
20 Talreja, R. (1985), "A continuum mechanics characterization of damage in composite materials", Proc. R. Soc. A399, 195-216   DOI
21 Voyiadjis, G.Z. and Dorgan, R.J. (2007), "Framework using functional forms of hardening internal state variables in modeling elasto-plastic-damage behavior", Int. J. Plasticity (in Press)   DOI   ScienceOn
22 Voyiadjis, G.Z. and Kattan, P.I. (1993), "Damage of fiber-reinforced composite materials with micromechanical characterization", Int. J. Solids Struct., 30(20), 2757-2778   DOI   ScienceOn
23 Voyiadjis, G.Z. and Deliktas, B. (2000), "A coupled anisotropic damage model for the inelastic response of composite materials", Comput. Meth. Appl. Mech. Eng., 183, 159-199   DOI   ScienceOn
24 Voyiadjis, G.Z. and Kattan P.I. (1999), "Advances in damage mechanics: metals and metal matrix composites", Elsevier, Amsterdam
25 Voyiadjis, G.Z. and Park, T. (1999), "Kinematics description of damage for finite strain plasticity", J. Eng. Sci., 37, 803-830   DOI   ScienceOn
26 Voyiadjis, G.Z. and Kattan, P.I. (1993), "Damage of fiber reinforced composite materials with micromechanical characterization", Int. J. Solids Struct., 30, 2757-2778   DOI   ScienceOn