Browse > Article
http://dx.doi.org/10.12989/sem.2018.65.4.369

Layer-wise numerical model for laminated glass plates with viscoelastic interlayer  

Zemanova, Alena (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague)
Zeman, Jan (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague)
Janda, Tomas (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague)
Sejnoha, Michal (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague)
Publication Information
Structural Engineering and Mechanics / v.65, no.4, 2018 , pp. 369-380 More about this Journal
Abstract
In this paper, a multi-layered finite element model for laminated glass plates is introduced. A layer-wise theory is applied to the analysis of laminated glass due to the combination of stiff and soft layers; the independent layers are connected via Lagrange multipliers. The von $K{\acute{a}}rm{\acute{a}}n$ large deflection plate theory and the constant Poisson ratio for constitutive equations are assumed to capture the possible effects of geometric nonlinearity and the time/temperature-dependent response of the plastic foil. The linear viscoelastic behavior of a polymer foil is included by the generalized Maxwell model. The proposed layer-wise model was implemented into the MATLAB code and verified against detailed three-dimensional models in ADINA solver using different hexahedral finite elements. The effects of temperature, load duration, and creep/relaxation are demonstrated by examples.
Keywords
laminated glass plate; finite element method; layer-wise plate model; Lagrange multipliers; geometric nonlinearity; von $K{\acute{a}}rm{\acute{a}}n$ assumptions; time/temperature-dependent behavior; generalized Maxwell model; Williams-Landel-Ferry equation; Newton method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Naumenko, K. and Eremeyev, V.A. (2014), "A layer-wise theory for laminated glass and photovoltaic panels", Compos. Struct., 112, 283-291.   DOI
2 Pica, A., Wood, R.D. and Hinton, E. (1980), "Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation", Comput. Struct., 11(3), 203-215.   DOI
3 Reddy, J.N. and Robbins, J.D.H. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47, 147-169.   DOI
4 Schmidt, J., Zemanova, A., Janda, T., Zeman, J. and Sejnoha, M. (2017), "Variationally-based effective dynamic thickness for laminated glass beams", Acta Polytech. CTU Proc. 13, Prague, September.
5 Williams, M.L., Landel, R.F. and Ferry, J.D. (1955), "The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids", J. Am. Chem. Soc., 77(14), 3701-3707.   DOI
6 Wu, P., Zhou, D., Liu, W., Lu, W. and Wan, L. (2016), "Three-dimensional elasticity solution of layered plates with viscoelastic interlayers", Mech. Time-Dep. Mater., 21(3), 307-329.
7 Xenidis, H., Morfidis, K. and Papadopoulos, P.G. (2015), "A method for predicting approximate lateral deflections in thin glass plates", Struct. Eng. Mech., 53(1), 131-146.   DOI
8 Zemanova, A., Zeman, J., Sejnoha, M., Zemanova, A., Zeman, J. and Sejnoha, M. (2015), "Finite element model based on refined plate theories for laminated glass units", Lat. Am. J. Sol. Struct., 12(6), 1158-1181.   DOI
9 Zemanova, A., Zeman, J. and Sejnoha, M. (2017), "Comparison of viscoelastic finite element models for laminated glass beams", J. Mech. Sci., 131-132, 380-395.   DOI
10 Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157.   DOI
11 Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140.   DOI
12 Zienkiewicz, O.C., Watson, M. and King, I.P. (1968), "A numerical method of visco-elastic stress analysis", J. Mech. Sci., 10(10), 807-827.   DOI
13 Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2013), The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam, the Netherlands.
14 Andreozzi, L., Briccoli Bati, S., Fagone, M., Ranocchiai, G. and Zulli, F. (2014), "Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass", Constr. Build. Mater., 65, 1-13.   DOI
15 Belytschko, T., Tsay, C.S. and Liu, W.K. (1981), "A stabilization procedure for the quadrilateral plate element with one-point quadrature", J. Numer. Meth. Eng., 19(3), 405-419.
16 Bonnans, J.F., Gilbert, J.C., Lemarechal, C. and Sagastizabal, C.A. (2006), Numerical Optimization: Theoretical and Practical Aspects, Springer Science & Business Media, Berlin, Germany.
17 Carrera, E. (2004), "On the use of the Murakami's zig-zag function in the modeling of layered plates and shells", Comput. Struct., 82(7-8), 541-554.   DOI
18 Christensen, R. (1982), Theory of Viscoelasticity: An Introduction, Academic Press, New York, U.S.A.
19 Duser, A., Jagota, A. and Bennison, S. (1999), "Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure", J. Eng. Mech., 125(4), 435-442.   DOI
20 Eisentrager, J., Naumenko, K., Altenbach, H., and Koppe, H. (2015a), "Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels", J. Mech. Sci., 96-97, 163-171.   DOI
21 Eisentrager, J., Naumenko, K., Altenbach, H. and Meenen, J. (2015b), "A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory", Compos. Struct., 133, 265-277.   DOI
22 Flocker, F.W. and Dharani, L.R. (1998), "Modeling interply debonding in laminated architectural glass subject to low velocity impact", Struct. Eng. Mech., 6(5), 485-496.   DOI
23 Galuppi, L. and Royer-Carfagni, G. (2012), "The effective thickness of laminated glass plates", J. Mech. Mater. Struct., 7, 375-400.   DOI
24 Galuppi, L. and Royer-Carfagni, G. (2013a), "The effective thickness of laminated glass: Inconsistency of the formulation in a proposal of EN-standards", Compos. Part B Eng., 55, 109-118.   DOI
25 Galuppi, L. and Royer-Carfagni, G. (2013b), "The design of laminated glass under time-dependent loading", J. Mech. Sci., 68, 67-75.   DOI
26 Huang, X., Liu, G., Liu, Q. and Bennison, S.J. (2014), "An experimental study on the flexural performance of laminated glass", Struct. Eng. Mech., 49(2), 261-271.   DOI
27 Krysl, P. (2015), Finite Element Modeling with Abaqus and Matlab for Thermal and Stress Analysis, Pressure Cooker Press, San Diego, California, U.S.A.
28 Mau, S.T. (1973), "A refined laminated plate theory", J. Appl. Mech., 40(2), 606-607.   DOI
29 Liang, Y., Lancaster, F. and Izzuddin, B.A. (2016), "Effective modelling of structural glass with laminated shell elements", Compos. Struct., 156, 47-62.   DOI